

GHD

138 East 7th Avenue, Suite 100

Vancouver, British Columbia V5T 1M6, Canada

T +1 604 214 0510 | F 604 +1 604 214 0525 | E info-northamerica@ghd.com | ghd.com

Document status

Status	Revision	Author	Reviewer		Approved for i	ssue	
Code			Name	Signature	Name	Signature	Date
S3	00	David R. Barton Melissa Jenkins	Allan Molenhuis Natasha Turl Deacon Liddy		Deacon Liddy		April 14, 2023
S4	01	David R. Barton	Allan Molenhuis	allon Molechicis	Allan Molenhuis	allan Molihiis	April 28, 2023

© GHD 2023

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive Summary

GHD Limited (GHD) was retained by Comox Strathcona Waste Management (CSWM), a function of the Comox Valley Regional District (CVRD), to complete the 2022 water quality monitoring and prepare this Annual Operations and Monitoring Report (Annual Report) for the Campbell River Waste Management Centre (Site or CRWMC). The objective of this Annual Report is to summarize the developmental progress and environmental monitoring for the Site during the 2022 calendar year (Reporting Period). The Annual Report contains the information required by Section 10.6 of the Landfill Criteria for Municipal Solid Waste (Landfill Criteria), Section 25.3 of the 2012 Comox Strathcona Solid Waste Management Plan (SWMP), and Section 3.2 of the Operational Certificate (OC) MR-02401.

The Site is located on Crown Lands within the city limits of Campbell River, British Columbia (BC) at 6700 Argonaut Road approximately 7.5 kilometres (km) west of the city centre. The Site is owned by the CVRD and operated by Berry & Vale Contracting Ltd. under contract with the CVRD. The authorized works include the municipal solid waste landfill and related appurtenances.

Site Operations and Development

The CRWMC Sanitary Landfill (Landfill) reached capacity as of May 6, 2022. The Site now operates as a transfer station, with all MSW transferred to the Comox Valley Waste Management Centre (CVWMC) for disposal.

During the 2022 calendar year, approximately 23,910 tonnes of waste were brought to the Site for disposal, resulting in a per capita disposal rate estimate of 0.50 tonnes/year. Most of the waste brought for disposal, 21,709 tonnes, was transferred to the CVWMC for disposal, with the remaining 2,201 tonnes disposed at the CRWMC Landfill. Approximately 4,963 tonnes of waste were diverted from the Landfill.

Using the 2,201 tonnes of waste discharged to the Landfill in 2022, the apparent waste density (mass of waste landfilled/volume of airspace consumed) from January 1 to May 6, 2022, is approximately 0.54 tonnes/m³.

Construction for final closure of the Landfill at the Site was completed in 2022. Installation of an LFG collection system and enclosed LFG flare was underway in 2022 and will be completed in 2023. A regional organics composting facility was under construction in 2022 on the lot adjacent to the Landfill and is expected to be in operation in 2023.

Environmental Monitoring

Groundwater was observed to flow towards the east across the Site based on water levels measured during the Reporting Period, which is consistent with previous years. Groundwater elevations across the Site showed a decreasing trend between 2017 and 2019, but have since stabilized. Groundwater elevations at the Site in 2022 were consistent with the elevations observed in 2021 and 2020. The Site water table was found to fluctuate seasonally between 0.41 to 5.91 m with a median fluctuation of 1.55 m over the four monitoring events conducted in 2022.

Analytical results for groundwater and surface water samples (SWM Pond only) are compared to the BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96 including amendments up to BC Reg. 179/2021, July 7, 2021) Schedule 3.2 Column 3 (Aquatic Life Freshwater) (FAW) and Schedule 3.2 Column 6 (Drinking Water) (DW).

Surface water analytical results (excluding SWM Pond) are compared to the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (BC ENV, 2021), BC Source Drinking Water Quality Guidelines (ENV, 2020), and BC Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (BC Ministry of Environment [MOE], 2021) (WQGs) for drinking water (DW) and the protection of freshwater aquatic life (FWAL).

No Landfill-derived impacts were observed in groundwater quality at background monitoring wells AM02-1 and MW01-16. Groundwater quality at monitoring wells AM02-1 and MW01-16 are considered to be representative of background groundwater quality at the Site.

Leachate impacts continue to be observed in groundwater at the Landfill Vicinity monitoring wells EBA04-6, EBA04-7, HBT94-1, and HBT94-2. Dissolved manganese concentrations were greater than the CSR DW standard during one or more monitoring events in 2022 at HBT94-1.

Concentrations of leachate indicator parameters at EBA11-1 are significantly elevated relative to background groundwater quality and the other Block J monitoring wells. Groundwater quality at EBA11-1 is likely affected by the infiltration of leachate impacted surface water in the SWM Pond.

With the exception of EBA11-1, groundwater quality results from the Block J Vicinity wells are stable and do not show landfill-derived groundwater impacts.

Overall, the 2022 monitoring results from the Downgradient Off-Site well MW02-18 shows that Landfill-derived impacts remain present at the shallow monitoring well. Results from the remaining wells show that minor impacts may be present but are limited and are not worsening. Ammonia and dissolved manganese concentrations at MW02-18 were greater than the applicable CSR standards throughout 2022. It is noted that monitoring well MW02-18 is located adjacent to a historic dumping ground, therefore, impacts noted at MW02-18 may be from a combination of the Landfill and historical dumping.

Deep downgradient groundwater quality southeast of the Site at AG99-01, AG99-02, AG99-04, and AG99-05 remains generally stable over time with minimal leachate impacts observed. With the exception of dissolved vanadium concentrations at AG99-02, concentrations of analysed parameters were below the applicable CSR standards in 2022. The source of vanadium in groundwater quality at AG99-02 is not known at this time but is unlikely related to Landfill activities.

Based on the results of surface water quality monitoring conducted in 2022 at SW-1 (tributary of Cold Creek), and SW03-17 (unnamed pond upstream of SW-1) the presence of leachate impacts is not suspected.

The SWM Pond was sampled once in November of 2022. Water quality in the SWM Pond appears to be impacted by Landfill activities, with concentrations of several leachate indicator parameters similar to typical MSW leachate. Water quality in the SWM Pond is impacted by discharge from the side slope seeps which had been re-routed from Argonaut Road.

It is anticipated that surface water quality in the SWM Pond and groundwater quality at EBA11-1 will improve now that the final cover has been applied to the Landfill. These measures will minimize precipitation infiltration to the Landfill, resulting in a significantly lower rate of leachate generation. The final cover will also significantly increase the clean surface water runoff from the landfill footprint that flows to the SWM Pond resulting in increased infiltration of clean surface water upgradient of EBA11-1.

Recommendations

Continue the groundwater and surface water monitoring programs (Appendix K) on a quarterly basis. Install the LFG blower and flare and commission the LFG collection and management system. Complete the landfill gas monitoring program as described in the Closure Plan.

Contents

1.	Introd	luction	1
	1.1	Objectives and Scope	1
	1.2	Scope and Limitations	1
	1.3	Regulatory Settings	2
	1.4	Annual Report Organization	2
2.	Site B	Background	3
	2.1	Site Location	3
	2.2	Landfill Development	3
	2.3	Topography and Drainage	4
	2.4	Geologic Setting	4
		2.4.1 Regional Geology	4
		2.4.2 Site Geology	5
		Overburden Geology Bedrock Geology	5 5
	2.5	Hydrogeologic Setting	5
	2.6	Potential Receptors	6
2		·	
3.		Operations and Development	6
	3.1	Site Operations 3.1.1 Entrance Facilities	6
		3.1.2 Landfill	7
		3.1.3 Transfer Station	7
		3.1.4 Management of Recyclable Materials	7
		3.1.5 Fencing	8
	3.2	Changes from Approved Reports, Plans, and Specifications	8
		3.2.1 CRWMC Closure	8
	3.3	Site Development	8
		3.3.1 Closure Works	8
		3.3.2 Composting Facility	8
		3.3.3 Maintenance and Repairs	8
	2.4	3.3.4 Inspections	8
	3.4	Complaints	8
	3.5	Emergencies, Incidents and Non-Compliance Items	8
	3.6	Landfill Gas Collection	9
	3.7	Waste Tonnage	9
	0.0	3.7.1 Estimate of MSW Disposal Per Capita	9
	3.8	Volume Survey	9
	3.9	Remaining Capacity and Estimated Site Life	9
	3.10	Closure and Post-Closure Fund Estimate	9
	3.11	Operational Plan for the Next 12-Months	10
4.	Envir	onmental Monitoring Program	10

5.	Grour	ndwater Monitoring Program	10
	5.1	Surface Water Monitoring Program	11
	5.2	Leachate Monitoring Program	11
	5.3	Sampling Methodology	11
	5.4	Quality Assurance/Quality Control	12
	5.5	Laboratory Program	12
	5.6	Data Quality Assessment and Verification	12
6.	Envir	onmental Monitoring Program Results and Trend Analysis	12
	6.1	Water Level Monitoring	12
	6.2	Typical Leachate Indicator Parameters	13
	6.3	Groundwater Quality	14
		6.3.1 Background Groundwater Quality Results	14
		6.3.2 Landfill Vicinity Groundwater Quality Results	14
		6.3.3 Block J Vicinity Groundwater Quality Results	15
		6.3.4 Downgradient Off-Site Groundwater Quality Results	15
	6.4	Groundwater Geochemical Characteristics	16
	6.5	Surface Water Quality	17
7.	Comp	liance Assessment	18
	7.1	Groundwater	18
	7.2	Surface Water	18
8.	Sumn	nary	19
9.	Recor	nmendations	20
10.	Refer	ences	21
Tal	ble in	dex (in text)	
Tabl	e 5.1	Typical Leachate Indicator Parameters Concentration Range	13
Tal	ble in	idex (following text)	
Tabl	o 1	Waste Tonnage and Diversion	
Tabl		Waste Formage and Diversion Waste Area Population and Projected Population	
Tabl		Well Completion Details and Hydraulic Monitoring	
Tabl		Groundwater Analytical Results - General Chemistry, Nutrients, Metals	
Tabl		Groundwater Analytical Results – Volatile Organic Compounds and Petroleum Products	
Tabl Tabl	e 6a/b	Surface Water Analytical Results Analytical Results Tables Notes	
ıavı	U 1	Analytical Nobility Tables Notes	

Figure index

Figure 1	Site Location
Figure 2	Site Plan and Monitoring Locations
Figure 3	Site Area Zoning and Land Use
Figure 4	Agricultural Land Reserve Boundaries
Figure 5	Drainage Map
Figure 6	Groundwater Contours – May 2022
Figure 7	Groundwater Contours - November 2022
Figure 8	Chloride Isopleths – November 2022
Figure 9	Manganese Isopleths – November 2022
Figure 10	Piper Plot – November 2022

Appendices

Appendix A	Operational Certificate OC-2401
Appendix B	Borehole Logs
Appendix C	Well Licenses and Surface Water Points of Diversion
Appendix D	2022 Closure Fund Memorandum
Appendix E	2022 Environmental Monitoring Specification
Appendix F	Field Sample Keys and Laboratory Reports
Appendix G	Data Verification Memorandum
Appendix H	Hydrographs
Appendix I	Leachate Indicator Parameter Concentration Ranges
Appendix J	Concentration versus Time Plots
Appendix K	2023 Environmental Monitoring Specification

1. Introduction

GHD Limited (GHD) was retained by Comox Strathcona Waste Management (CSWM), a function of the Comox Valley Regional District (CVRD), to complete the 2022 water quality monitoring and prepare this Annual Operations and Monitoring Report (Annual Report) for the Campbell River Waste Management Centre (CRWMC or Site).

1.1 Objectives and Scope

The purpose of this Annual Report is to summarize the Site operations and development activities carried out during the 2022 calendar year (Reporting Period) and to provide and assess the Site environmental monitoring data. The Annual Report contains the following information in accordance with Section 10.6 of the Landfill Criteria for Municipal Solid Waste (Landfill Criteria) (BC MOE, 2016), Section 25.3 of the 2012 Comox Strathcona Solid Waste Management Plan (SWMP) (AECOM, 2013), and Section 3.2 of the Site's Operational Certificate (OC) OC-2401 (Appendix A):

- A review of the preceding year of operation, plans for the next year and any new information or proposed changes relating to the facility.
- A summary of the landfill operation equipment.
- Closure works completed.
- Summary of complaints received, and the actions taken as a result of the complaint.
- Identification of non-compliance items and proposed action plan and schedule to reach compliance (if applicable).
- Progress report on efforts to resolve previously identified non-compliance items (if applicable).
- Landfill gas quantities collected, flared, and utilized.
- The tonnage of each type of waste discharged into the landfill or diverted.
- An updated estimate of the municipal solid waste (MSW) per capita disposal rate.
- A waste area population table including adjusted projected population for the estimated facility life.
- A survey including volume changes, on required frequency.
- The remaining Site life and capacity update.
- Update to the closure and post closure liability fund estimate.
- Comparison of the water quality monitoring data with the performance criteria in Section 4 of the Landfill Criteria
 for Municipal Solid Waste and the Guidelines for Environmental Monitoring at Municipal Solid Waste Landfills,
 interpretation of the monitoring data, identification and interpretation or irregularities and trends,
 recommendations, and any proposed changes to the monitoring program.

1.2 Scope and Limitations

This report: has been prepared by GHD for Comox Valley Regional District and may only be used and relied on by Comox Valley Regional District for the purpose agreed between GHD and Comox Valley Regional District.

GHD otherwise disclaims responsibility to any person other than Comox Valley Regional District arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

1.3 Regulatory Settings

The CRWMC sanitary landfill (Landfill) currently operates under Operational Certificate 2401 (OC-2401), issued on December 2, 2003, by the British Columbia Ministry of Environment (MOE), and last amended on May 19, 2020. OC-2401 replaced the original permit, which was issued in November 1973 and last amended in July 1992 (CH2MHILL, 2009). A copy of the OC with the amendment letter are provided in Appendix A. Refuse authorized for disposal at the Site is characterized as "municipal solid waste as defined under the Waste Management Act".

Groundwater quality for the Site has been historically compared to the BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96 including amendments) Schedule 10 (Schedule 10) Column V (Drinking Water) (DW) and Schedule 6 (Schedule 6) Column II (Aquatic Life, Freshwater) (FAW) and Column V (Drinking Water) (DW). On November 1, 2017, the Stage 10 (Omnibus) and Stage 11 (Housekeeping) amendments came into effect, thus replacing the CSR Standards listed above. The CSR standards applied in this Annual Report are:

- Schedule 3.2 Generic Numerical Water Standards Column 3 for Freshwater Aquatic Life (FAW)
- Schedule 3.2 Generic Numerical Water Standards Column 6 for Drinking Water (DW)

The appropriate groundwater standards that apply to the Site depend on the current and future potential groundwater and surface water uses in the vicinity of the Site and the potential for groundwater or surface water at the Site to flow to surface water bodies that support aquatic life in the vicinity of the Site. The BC Ministry of Environment and Climate Change Strategy (ENV) (formerly the BC MOE) Protocol 21 Water Use Determination (Protocol 21) provides the criteria for selecting the appropriate CSR standards for water quality.

Protocol 21 specifies that Aquatic Life standards apply to groundwater quality at sites located within a 500 metre (m) radius of a surface water body. According to iMapBC, accessed April 6, 2023, the Site is located less than 500 m from two fresh surface water bodies: McIvor Lake and an ephemeral tributary of Cold Creek. McIvor Lake is upgradient of the Site and is not a receptor of any groundwater discharge from the Site. The tributary of Cold Creek is downgradient of the Site and may potentially be a receptor of groundwater discharge from the Site. Therefore, FAW standards apply to groundwater at the Site.

Based on the information obtained from iMapBC, accessed April 6, 2023, five water supply wells are located within a 500 m radius from the Site listed for Private Domestic use. Additionally, based on GHD's correspondence with the owner of the adjacent property, located at 5900 Argonaut Road, there is an unregistered shallow dug well located on the 5900 Argonaut Road property, which is located less than 500 m from the Site. GHD understands the well is used for domestic purposes at this time. The CSR DW standards have been applied to the Site in accordance with Protocol 21.

Surface water analytical results are also compared to the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (ENV, 2021), BC Source Drinking Water Quality Guidelines (ENV, 2020), and BC Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (BC MOE, 2021) (collectively defined as WQGs) for drinking water (DW) the protection of freshwater aquatic life (FAW).

1.4 Annual Report Organization

The Annual Report is organized into the following sections:

- Executive Summary
- Section 1 Introduction
- Section 2 Site Background
- Section 3 Site Operations and Development
- Section 4 Environmental Monitoring Program

- Section 5 Environmental Monitoring Results
- Section 6 Compliance Assessment
- Section 7 Summary
- Section 8 Recommendations
- References

2. Site Background

2.1 Site Location

A Site location map is presented on Figure 1 and a Site Plan is presented on Figure 2. Figure 3 presents the land zoning uses in the area surrounding the Site.

The Site is located on Crown Lands within the city limits of Campbell River, BC at 6700 Argonaut Road, approximately 7.5 kilometres (km) west of the city centre. The legal description for the southern half of the Site is Block M, all part of District Lot 85, Sayward District. The legal description of the northern portion of the Site is Block J, all part of District Lot 85, Sayward District. The previous legal land description for Block m was "Block C, together with that part of Block A, and that part of Block K, all part of District Lot 85, Sayward District". The aforementioned lands were all combined into Block M as per Land Lease V934579 dated January 8, 2019, from the Ministry of Forests, Lands and Natural Resource Operations.

A portion of Block M and a majority of Block J are located within the Agricultural Land Reserve (ALR) as set out by the Agricultural Land Commission (ALC). The CVRD has received a variance from the ALC with regards to the current location of the Landfill and surface water management pond where they overlap with ALR lands. The ALR boundary also includes land parcels located north and east of the Site as illustrated in Figure 4.

The total Site area is 29.7 hectares. The Site is currently zoned as Industrial Four (I 4) under the City of Campbell River Bylaw No. 3250, 2006, consolidated to bylaw 3743, 2019 (last amended November 4, 2019).

Island Ready Mix is located immediately to the west of the Site and houses operations and equipment for concrete manufacturing and a gravel pit. West Shore Aggregates Ltd. operates a gravel pit immediately to the south of the Site. The West Shore Aggregates property also has a landfill permitted to discharge refuse from "dryland log sorting, land clearing, construction and demolition operations" under permit PR 07730.

Mature forests situated on Crown Land are located to the north and east of the Site. There are three residential dwellings located approximately 500 m to the northeast of the Landfill footprint. The property immediately to the east of Block J is occupied by a single dwelling residential lot.

There are also several active and historical industrial operations in the vicinity of the Site. Active industrial operations include an auto scrap yard, three construction waste landfills (permits PR 07730, PR 10807, and PR 9081), aggregate extraction pits, an asphalt paving plant, and an Emcon facility, which includes a salt storage shed. Historical operations in the area include a crane operation, which housed facilities for cleaning copper coated fish farm nets, and a metal scrap yard.

2.2 Landfill Development

Prior to waste disposal operations at the Site, the Site operated as an aggregate extraction facility in the 1950s. According to CH2M HILL's 2009 closure plan, the Site was then used as an unregulated dump site prior to the 1970s. Waste burning took place at the Site as well as disposal of liquid wastes (EBA, 2014). The City of Campbell River took over Site operations in the mid 1970's until ownership was transferred to the CVRD in 1999 (EBA, 2014). A private

contractor, Berry & Vale Contracting Ltd. (Berry & Vale), has operated the Site under contract with the CVRD since 1996.

According to the SWMP, the Site was projected to reach its capacity in early 2012. A transfer station was constructed in 2011 to divert certain incoming waste streams to the Comox Valley Waste Management Centre (CVWMC). In 2014, a mechanically stabilized earth wall (MSE wall) was constructed along the southeastern Site boundary with the aim of addressing slope stability concerns and adding additional capacity.

Prior to closure of the landfill in May 2022, landfilling occurred on Block M. Block J is primarily used for extraction of sand and gravel for use as cover material within the Landfill. An updated 2017 Design, Operations, and Closure Plan (2017 DOCP) (GHD, 2017) was prepared in 2017 and was submitted to ENV in March 2018. The 2017 DOCP provides final contours and a closure plan for the Site. The 2017 DOCP includes updated plans for the management of landfill gas and surface water. In 2018 construction began on a surface water management pond (SWM Pond) in Block J and was completed in 2019. An updated Closure Plan was prepared and submitted to ENV October 1, 2020.

The Landfill reached capacity and ceased landfilling of waste on May 4, 2022. The Landfill closure was designed by GHD and was completed in 2022. Installation of an enclosed LFG flare was underway in 2022 and will be completed in 2023. A regional organics composting facility designed by Sperling Hansen began construction in 2022 on the adjacent lot to the Landfill (Block J) and is expected to be in operation early 2023.

Figure 2 presents a site plan for the Site.

2.3 Topography and Drainage

Topography in the vicinity of the Site generally slopes downward to the east from McIvor Lake, (approximately 400 m to the west of the Landfill footprint), flattening out approximately 500 m to the east of the Site. The Site is located on the north side of a local valley. The narrow valley floor slopes to the east/northeast following the course of Argonaut Road. The valley appears to have been expanded laterally by historical soil extraction operations at the Site and to the southwest of the Site across Argonaut Road.

There are no natural watercourses on the Site. A constructed surface water infiltration swale is located along the southeast boundary of the Landfill footprint, which collects surface runoff from the southeast side of the Landfill footprint. During periods of heavy rainfall, surface water has been observed to flow northeast along the swale infiltrating into the ground within approximately 500 m of the Landfill footprint.

The closest natural surface water channel is located 400 m northeast of the Site and is one of several ephemeral tributaries of Cold Creek. Cold Creek discharges into the Quinsam River approximately 3 km northeast of the Site. Quinsam Hatchery, a salmon hatchery, is located at the confluence of Cold Creek and the Quinsam River. Quinsam River ultimately drains into the Campbell River approximately 2.3 km downstream of the confluence of Cold Creek and Quinsam River.

McIvor Lake, which is contiguous with Campbell Lake, is located approximately 400 m to the west of the Site with a lake elevation of approximately 180 metres above mean sea level (m AMSL) well above the inferred original ground surface elevation of the Site (140 m AMSL). A drainage map illustrating surface water drainage in the area of the Site is presented in Figure 5.

2.4 Geologic Setting

2.4.1 Regional Geology

Vancouver Island is part of the Wrangellia Terrane, which includes most of Vancouver Island, Haida Gwaii, and parts of central Alaska. The Wrangellia Terrane is composed mostly of widespread, late Triassic aged flood basalts (Greene, Scoates and Weis, 2005). Regional bedrock geology in the vicinity of the Site is composed of the Vancouver Group of mid to late Triassic age (Guthrie, 2003). The Vancouver Group is composed of undivided sedimentary rocks, marine sedimentary volcanic rocks, and small amounts of siltstones.

At several time periods during the Pleistocene Epoch, Vancouver Island was believed to be glaciated with ice thicknesses up to 2,000 m. During the recession of the last glaciation approximately 14,000-years ago, glacial and glaciofluvial sediments were deposited, and in some cases reworked and redeposited, to make up many of the present surficial deposits of Vancouver Island. These deposits consist of till, which is deposited directly by glacial activity and consist of larger clasts supported in a matrix of fine-grained sediment, and of glacial outwash, which consists primarily of poorly sorted, coarse grained (sand and gravel) sediments deposited by glacial melt water (Greene, Scoates and Weis, 2005). The overburden at the Site consists of glaciofluvial and outwash deposits of sand and gravel.

2.4.2 Site Geology

The understanding of the Site geology presented in the following sections is based on existing Site borehole logs for the monitoring wells, provided in Appendix B, regional mapping, previous reports, and well completion logs from nearby private wells.

Overburden Geology

Overburden geology at the Site is relatively homogeneous and is primarily composed of deposits of fine to medium grained sand interbedded with deposits of fine to medium grained sand and medium subrounded gravel. Lenses of silt and fine-grained sand up to 4 m in thickness are present in an irregular distribution across the Site. Decommissioned monitoring well EBA04-5 was the deepest boring within the Site boundaries with a depth of 67 metres below ground surface (m BGS). Bedrock was not encountered at monitoring well EBA04-5. The boring locations (monitoring wells) are illustrated on Figure 2.

Bedrock Geology

Based on Site borehole logs, bedrock has not been encountered in any boreholes advanced within the Site or immediately to the north and west of the Site, which are up to 67 m deep. Bedrock is also not encountered at private water supply wells, which are approximately 60 m deep and located approximately 3 km to the northeast to the Site. Bedrock is encountered at a depth of approximately 1.8 m BGS approximately 1.5 km to the southwest of the Site based on well stratigraphy log for private water supply well (well tag 98020) adjacent to McIvor Lake. The bedrock lithology was not indicated on the well log.

From review of bedrock geology maps of the area, it appears the Karmutsen formation is the bedrock unit in the vicinity of the Site. The Karmutsen formation is comprised of volcanic basalts and breccias.

2.5 Hydrogeologic Setting

The BC aquifer classification system lists Aquifer 975 to be evident over the extent of the Site. Aquifer 975 is classified as a sand and gravel aquifer of moderate productivity, high vulnerability, and low demand.

The Site is located on an unconfined aquifer primarily composed of sands and gravels. Groundwater within this aquifer flows to the east/northeast across the Site. From the mid-1990s to the early 2000s an overall decrease in groundwater elevations within the sand and gravel aquifer by 2 to 4 m is apparent based on historical Site groundwater elevation measurements. The cause of this decrease in groundwater elevations is unknown, however, this phenomenon is not suspected to be related to the Site.

The Site monitoring wells are generally screened at depths ranging from approximately 1 to 25 m below the top of the water table within the overburden aquifer. Wells screened less than 15 m below the top of the water table are intended to monitor the shallow portion of the overburden aquifer. Wells screened greater than 15 m below the top of the water table are intended to monitor the deep portion of the overburden aquifer.

Figures 6 and 7 present groundwater contours for the May and November 2022 monitoring events. Details of the results of the 2022 hydraulic monitoring program at the Site are presented in Section 5.1.

2.6 Potential Receptors

Surface water bodies located within a 500 m radius of the Site are McIvor Lake and Cold Creek. Based on the local topography and interpreted groundwater flow direction, McIvor Lake is located upgradient from the Site; therefore, it is an unlikely receptor of groundwater or surface water from the Site. The ephemeral tributary of Cold Creek is located northeast of the Site boundary (750 m northeast of the waste footprint). Based on local topography, groundwater, and surface water elevations and hydrogeologic conditions (i.e., unconfined sand and gravel aquifer) of the area, the nearest tributary of Cold Creek is downgradient of the Site. There are no surface water drainages from the Site to the tributary. Groundwater discharge to this tributary is not confirmed as groundwater elevations in the vicinity of the ephemeral tributary is not known. Surface water sampling is carried out on the Cold Creek tributaries east and northeast of the Site. (SW-1 located on a tributary of Cold Creek located approximately 1,100 m east of the Site and SW03-17 located approximately 1000 m east of the Site on a pond).

Based on a search of the iMapBC (accessed April 6, 2022), there are twelve water wells within a 500 m radius of the Site. Five of the water wells are listed as water supply wells for Private Domestic use, five are listed as water supply wells for Commercial/Industrial use, one is listed as a water supply well for unknown use and one is listed as a decommissioned monitoring well (Well tag 110853 assigned as monitoring well GLL93-1) in 2013. The well licenses and a map indicating the locations of the water wells are included in Appendix C.

Well tag 84136 was included in the 2020 environmental monitoring program (EMP) under the label EBA04-1. It should be noted the BC Water Resource Atlas indicates that well tag 84136 (labeled EBA04-1) is located at the southeast side of the Landfill footprint, however, it is actually located at the southwest corner of the Site.

Well tag 109728 was installed in January 2015 and appears to be located southeast of the Landfill footprint on the south side of Argonaut Road.

Well tags 122464, 122450, 39950, 73577, 74191, 74207, 93413, and 103257 appear to be located hydraulically upgradient from the Site; therefore, it is unlikely that MSW leachate from the Site will migrate to these well locations.

GHD understands an unregistered well is located on the 5900 Argonaut Road property approximately 70 m east of the Block J property line. GHD understands the well is a dug well currently used for domestic purposes. The well is approximately 7.9 m (26 feet) deep.

3. Site Operations and Development

3.1 Site Operations

The Site operates 7-days a week from 8:30 a.m. to 5:30 p.m. and is closed on all statutory holidays. The authorized works includes entrance facilities, sanitary landfill, recycling, and waste drop off/storage areas, and related appurtenances.

3.1.1 Entrance Facilities

The Site entrance is equipped with a lockable and electrified gate system, posted signs, power, and phone connection. The Site receives waste primarily from the Campbell River waste shed, which includes the City of Campbell River and the surrounding communities. Waste collected from transfer stations in Gold River and Cortes Island is also transferred to the Site. A weigh scale and scale house with a full-time attendant is located near the entrance.

3.1.2 Landfill

The Landfill is located to the northeast of the entrance facilities. As of May 4, 2022, the Landfill is closed and only accepts waste to be transferred to the CVWMC. It is a single-cell unlined natural attenuation landfill.

3.1.3 Transfer Station

The transfer station at the Site currently accepts the following types of waste:

- Household waste (non-recyclable)
- Construction and demolition materials
- Clean wood waste
- Yard waste
- Recyclable drywall

Non-recyclable household waste and construction and demolition waste received at the transfer station is discharged to the Landfill. Clean wood waste and yard waste received at the transfer station is diverted from the Landfill at off-Site facilities.

3.1.4 Management of Recyclable Materials

The selected recyclables that are accepted at the Site are:

- Glass containers
- Foam packaging
- Cartons and paper cups
- Plastic film
- Other flexible plastic packaging
- Metal containers
- Hard plastic containers
- Paper and cardboard
- Household batteries (excluding vehicle batteries)
- Residential small appliance and power tools
- Larger residential product packaging (e.g., hard plastic pots and trays)
- Scrap metal
- Drywall
- Refrigerant containing items
- Commercial recyclable hard plastics
- Tires off of rims (commercial and residential)
- Light bulbs (commercial and residential)
- Yard waste and grass clippings
- Clean wood waste
- Cooking oil
- Thermostats
- Polychlorinated biphenyls (PCBs) ballasts
- Smoke alarms and carbon monoxide detectors
- Commercial and residential motor oil and antifreeze
- Propane cylinders

3.1.5 Fencing

The entrance facilities and Landfill area are surrounded by an electric fence operated year-round.

3.2 Changes from Approved Reports, Plans, and Specifications

3.2.1 CRWMC Closure

The Landfill closure and updating plan and conceptual landfill gas design were submitted to the ENV October 1, 2020 and was accepted on February 2, 2021. The final issued for tender drawings for the landfill gas system and closure design, completed by GHD, were submitted to the ENV, as requested, on April 5, 2022.

An application for an OC amendment will also be submitted to reflect the closed status of the Landfill within 2023.

There were no other changes to approved reports, plans and specifications in 2022.

3.3 Site Development

3.3.1 Closure Works

Following closure of the Landfill in May 2022, a geomembrane and final cover were applied. The final cover is currently establishing vegetative cover. As part of the closure works, monitoring well EBA04-2 was decommissioned on July 6, 2022.

3.3.2 Composting Facility

A regional organics composting facility designed by Sperling Hansen began construction in 2022 on the adjacent lot to the Landfill (Block J) and is expected to be in operation early 2023.

3.3.3 Maintenance and Repairs

Ongoing maintenance and repairs of Site equipment was completed as scheduled and required.

3.3.4 Inspections

There were no formal documented inspections in 2022. Landfill cover is native sands and gravels with limited grass growing and there were no signs of significant settlement, burrowing animals or erosion identified during regular operations.

3.4 Complaints

No complaints were received in 2022 for the Site.

3.5 Emergencies, Incidents and Non-Compliance Items

No emergencies, incidents, or non-compliance issues occurred at the Site in 2022.

3.6 Landfill Gas Collection

As part of the 2017 DOCP (GHD, 2018), GHD updated the most recent Landfill Gas Generation Assessment (Conestoga-Rovers and Associates, 2010) to assist the development of the conceptual design of the landfill gas (LFG) collection system for the Site. The updated LFG generation assessment (GHD 2017) predicted that the Site will produce approximately 1,536 tonnes of methane in 2020 (GHD, 2017). The detailed design of the LFG collection system occurred in 2021. Construction of the LFG collection system was completed in 2022, with 31 vertical LFG wells and 13 probes installed. The blower and flare will be installed in 2023.

3.7 Waste Tonnage

Table 1 presents tonnages of each type of waste received and discharged to the Landfill in 2022. Approximately 25,303 tonnes of material were received from the Campbell River wasteshed, of which, 1,393 tonnes of non-MSW materials were diverted by customers, and 23,910 tonnes of MSW accepted. Of that, 21,209 tonnes of MSW were transferred to the CVWMC, and 2,201 tonnes of MSW were landfilled at the CRWMC in 2022. An additional 4,963 tonnes of recycled/diverted materials and 1,067 tonnes of clean fill were received, as measured over the scale.

3.7.1 Estimate of MSW Disposal Per Capita

Table 2 presents the current and projected population of the Campbell River wasteshed until the estimated date of Site closure. Based on 23,910 tonnes of waste generated and a population of 47,761 in the Campbell River wasteshed in 2022, the updated 2022 municipal solid waste per capita estimate is 0.50 tonnes.

3.8 Volume Survey

The annual airspace consumption estimate for 2022 was calculated based on topographic surveys completed of the Site by McElhanney Associates Ltd. on December 15, 2021 and May 6, 2022. The calculated airspace used between each survey is presented below:

- December 15, 2021 to May 6, 2022: 4,625 m³
 - Prorated to January 1 to May 6, 2022: 4,108 m³
- Total estimated airspace consumed in 2022: 4,108 m³

3.9 Remaining Capacity and Estimated Site Life

The Landfill reached capacity and stopped accepting waste as of May 4, 2022.

The apparent waste density (mass of waste landfilled/volume of airspace consumed) in 2022 was 0.54 tonnes per m³.

3.10 Closure and Post-Closure Fund Estimate

The CRWMC closed in spring 2022 and had an anticipated closure cost of \$10,548,575. Forecasted closure and post-closure costs for the Site were prepared for the CVRD under separate cover. A copy of the memorandum including the information pertinent to the Site is included in Appendix D.

3.11 Operational Plan for the Next 12-Months

Operational plans for 2023 includes the following activities:

- The Landfill is now closed, and the Site operates as a transfer station.
- Installation of the flare and blower skid, and commissioning of the landfill gas collection system
- Completion of construction of the regional organics composting facility on the adjacent lot to the Landfill (Block J).
 The facility will be in operation in early 2023.
- The recycling facility will be upgraded in the summer of 2023.

4. Environmental Monitoring Program

The water quality monitoring program for the Site was developed based on previous water quality monitoring reports and the requirements for monitoring municipal landfills as provided in Guidelines for Environmental Monitoring and Municipal Solid Waste Landfills (BC MOE, 1996). The objective of the program is to identify potential impacts (if any) the Landfill has on the receiving groundwater and surface water.

Four water quality monitoring events were conducted during the Reporting Period: February, May, August, and November.

During the Reporting Period, water quality monitoring was conducted by GHD personnel with analytical services provided by Canadian Association for Laboratory Accreditation (CALA) accredited laboratory ALS Canada Ltd (ALS), located in Burnaby, BC. Additionally, a CVRD technician was trained during the third and fourth quarters to take over the field component of the EMP. Water quality monitoring locations are presented on Figure 2. Monitoring specifications including analytical parameters and monitoring frequency for 2022 are included in Appendix E.

5. Groundwater Monitoring Program

The objective of the groundwater monitoring program is to monitor groundwater quality within the Site area and to identify, if any, the extent, magnitude, and temporal trends of Landfill-derived impacts to groundwater quality.

The field component of the groundwater monitoring program consists of both hydraulic monitoring and groundwater sampling at 22 locations in the Site area. Groundwater monitoring wells (MWs) are located as shown in Figure 2. The 2022 groundwater monitoring program included sampling individual monitoring wells as follows:

- Background wells:
 - Shallow: AM02-01Deep: MW01-16
- Landfill Vicinity wells, which are located within the Landfill footprint or on/near the Site boundary adjacent to the Landfill footprint. For the purpose of discussion in this Annual Report, the Landfill Vicinity wells are further divided between their screened locations in the shallow (<15 metres below the water table) or deep portions (>15 metres below the water table) of the overburden aquifer:
 - Shallow: EBA04-7, HBT94-1, HBT94-3
 - Deep: EBA04-1, EBA04-6, HBT94-2

It should be noted that EBA04-1 is sampled from a tap near the Site scale house located upgradient of the estimated limit of waste, however it has been grouped with the Landfill Vicinity wells for assessment purposes due to its proximity to the estimated limit of waste of the Landfill.

- Block J Vicinity wells, which are located northeast and cross-gradient of the Landfill. The Block J Vicinity wells are further divided between their screen locations in the shallow or deep portions of the overburden aguifer:
 - Shallow: AG99-06, EBA11-1, EBA11-3, EBA11-4
 - Deep: MW04-19, MW08-21
- Downgradient Off-Site wells, which are located east and southeast of the Landfill. The Downgradient Off-Site
 wells are further divided between their screen locations in the shallow or deep portions of the overburden aquifer:
 - Shallow: MW02-18, MW03-18, MW06-21, MW07-21
 - Deep: AG99-01, AG99-02, AG99-04, AG99-05

Groundwater samples were collected quarterly in 2022, with the following exceptions:

- HBT94-3 was dry during all monitoring events.
- HBT94-1 was dry in the February event.
- AM02-01 was dry during the February, May and November monitoring events. AM02-01 has historically been dry during most monitoring events.

Well completion details including screened intervals for each groundwater monitoring well are included in Table 3.

5.1 Surface Water Monitoring Program

The objective of the surface water monitoring program is to identify the extent, magnitude (if any) and temporal trends of potential Landfill-derived impacts to surface water quality.

Surface water monitoring locations are located downstream from the Site, as shown on Figure 2. The 2022 surface water monitoring program included sampling of three surface water monitoring locations as follows:

- SW-1 is located on an ephemeral tributary of Cold Creek, which drains into the Quinsam River. SW-1 was sampled during the February, May, and November monitoring events.
 - SW-1 was not sampled in August 2022 as it was dry.
- SW03-17 is located on a pond approximately 1 km east of the Site. This pond sometimes drains into to the same ephemeral tributary of Cold Creek that SW-1 is located on. SW03-17 was sampled during the May, August, and November sampling events.
 - SW03-17 was not sampled in February 2022 as it was frozen.
- SWM Pond is located on Site in Block J, northeast of the Landfill. The SWM Pond was only sampled during the November sampling event. Sampling was not possible during the February, May, and August sampling events as the location was dry.

5.2 Leachate Monitoring Program

As there is no leachate collection system at the Site, no leachate monitoring program is currently in place. The Site was originally developed as a natural attenuation landfill.

5.3 Sampling Methodology

Groundwater sampling was conducted in general accordance with BC Field Sampling Manual (MOE, 2013) and consisted of the following methodology:

- Well identification and inspection.
- Water level monitoring followed by well volume calculation.
- Well purging and stabilization monitoring. Purging was completed using a dedicated bailer or dedicated
 Waterra[™] tubing. A minimum three well volumes were purged at wells with good recovery. Wells with insufficient

yield were purged dry and allowed to recover followed by sample collection. Field measurements included pH, conductivity, temperature, turbidity, and oxidation-reduction potential.

- Sample collection using dedicated sampling equipment (bailer or WaterraTM).
- Equipment decontamination.

Surface water samples were collected by directly dipping a pre-cleaned unpreserved sample container below the water surface and then transferring to the appropriate preserved container when necessary. Field measurements included pH, conductivity, temperature, turbidity, oxidation-reduction potential, and dissolved oxygen.

Sampling of the domestic well on Site was completed by purging for a period of 20-minutes from an outside tap followed by direct sample collection. Field measurements collected included pH, conductivity, temperature, turbidity, and oxidation-reduction potential.

All samples were collected in the appropriate laboratory-supplied sample containers, preserved as required, packaged in an ice-chilled cooler, and delivered to the laboratory under chain-of-custody protocol. Groundwater samples designated for dissolved metals analysis were field filtered when possible.

5.4 Quality Assurance/Quality Control

In order to ensure adequate quality control for water quality samples, the following quality assurance/quality control (QA/QC) practices were employed during the Reporting Period:

- Activities performed by qualified and trained personnel.
- Daily field equipment calibration.
- Field QA/QC practices included field duplicate, field blank and trip blank analysis.

5.5 Laboratory Program

Analytical services for the EMP were provided by ALS of Burnaby, BC. ALS is accredited by the Canadian Association for Laboratory Accreditation (CALA) to perform the analytical tests required as part of the EMP. Field sample keys (FSK) and laboratory reports for each monitoring event are provided in Appendix F.

5.6 Data Quality Assessment and Verification

A qualified chemist completed data verification to assess laboratory and field QA/QC measures. The QA/QC memorandum presented in Appendix G indicates that data exhibited acceptable levels of accuracy and precision with the qualifications noted. All data reported for the 2022 EMP program has been determined to be acceptable for use in support of further analysis and interpretation in this Annual Report.

6. Environmental Monitoring Program Results and Trend Analysis

6.1 Water Level Monitoring

Results of the groundwater monitoring program (as detailed in Section 4.1) are presented in Table 3. Groundwater elevation data between 2014 and 2022 are presented as hydrographs in Appendix H. Groundwater contours for May and November 2022 are presented on Figures 6 and 7 and represent the dry and wet seasons, respectively.

Site water table was found to fluctuate seasonally between 19.98 to 21.55 m below top of riser (BTOR) with a median fluctuation of 1.55 m over the four monitoring events.

Consistent with historical inferred groundwater flow, groundwater was inferred to flow towards the east across the Site.

Vertical groundwater gradients were calculated for nested well pairs EBA04-6/EBA04-7 and MW03-18/AG99-05. A slight downward gradient during all four 2022 monitoring events at nested well pair EBA04-6/EBA04-7. At well pair MW03-18/AG99-05, a slight downward gradient was observed in February and May, and a slight upward gradient was observed in August and November.

Groundwater was observed to flow towards the east across the Site based on water levels measured during the Reporting Period, which is consistent with previous years. Site water table was found to fluctuate seasonally between 0.41 to 5.91 m with a median fluctuation of 1.55 m over the four monitoring events conducted in 2022. Groundwater elevations at the Site in 2022 were consistent with the elevations observed in 2021 and 2020. Groundwater elevations across the Site showed a decreasing trend between 2017 and 2019 but have since stabilized. Hydrographs showing groundwater elevation across the Site between 2014 and 2022 are presented in Appendix H.

6.2 Typical Leachate Indicator Parameters

The results of the water quality monitoring program are discussed in the following sections. Groundwater quality is assessed in terms of evidence of Landfill-related water quality impacts. This is accomplished through an assessment of the temporal and spatial trends in water quality and a comparison of water quality between each location, typical leachate concentrations, and background concentrations.

Assessment of groundwater and surface water quality at the Site employs indicator parameters that are indicative of leachate-impacted waters. As the Site does not have a leachate collections system or leachate monitoring wells to sample directly, the indicator parameters and their respective concentrations ranges are estimated using leachate quality monitoring data from MSW landfills of similar age ranges (approximately 10 to 15-years old).

Typical leachate indicator parameters concentration ranges for older MSW landfills are presented in Table 6.1 below.

Table 6.1 Typical Leachate Indicator Parameters Concentration Range

Parameter	Older MSW Landfills
Alkalinity	71 – 3,340 ⁽¹⁾
Ammonia	84.3 – 449 ⁽¹⁾
Boron	3.2 – 4.68 ⁽¹⁾
Chloride	500(2)
Conductivity (µS/cm)	161 – 8,126 ⁽¹⁾
Sulphate	50 ⁽²⁾
Iron	100 – 500 ⁽²⁾
Manganese	$0.03 - 7.9^{(2)}$
TDS	2,000 ⁽²⁾

All concentrations in mg/L unless otherwise specified.

TDS – total dissolved solids; mg/L – milligrams per litre; µS/cm – microSiemens per centimetre.

Based on GHD's experience with similar MSW landfills, we consider the above values to be a realistic estimate of potential parameter concentrations in leachate at the Site. However, leachate characteristics can vary widely between landfills as well as landfill age, therefore, the example values are for comparison purposes only and cannot be used to definitively determine whether leachate impacts are present or not.

¹ CRA, 2015.

² Mulamoottil, et. al, 1999.

6.3 Groundwater Quality

The groundwater monitoring well network includes Background, Landfill Vicinity, Block J Vicinity, and Downgradient Off-Site monitoring wells.

Groundwater samples were collected from all monitoring wells quarterly in 2022, except dry or inaccessible wells. The monitoring events occurred February 21-22, May 23-24, August 22-23, and November 21-22, 2022.

Groundwater analytical results are presented in Tables 4 and 5. Analytical table notes are presented in Table 7. Summary tables of the leachate indicator parameter concentration ranges at each location are included in Appendix I.

Concentration versus time (C. vs. T) plots of select leachate indicator parameters and vanadium, used to support a temporal assessment of leachate impacts, are presented in Appendix J. Vanadium is included in the C vs. T plots to visualize its temporal trends, which includes seasonal exceedances of the applicable CSR standard.

The following sections provide an analysis of water quality following an upgradient to downgradient pattern, divided by geographic areas.

6.3.1 Background Groundwater Quality Results

Based on groundwater flow direction and historical groundwater chemistry, background monitoring wells include AM02-01 and MW01-16. Both monitoring wells are located upgradient, west of the Landfill footprint (Figure 2) and are screened in the shallow and deep portion of the overburden aquifer, respectively.

The 2022 analytical results for samples collected from the background monitoring wells are summarized in Tables 4 and 5. Summary tables including current leachate indicator parameter concentration ranges are included in Appendix I (Table I-1). C vs. T plots of the leachate indicator parameters were used to support this assessment and are presented in Appendix J (Figures J-1 and J-2).

Background water quality in both the shallow and deep portions of the overburden aquifer is characterized by low concentrations of the leachate indicator parameters. The following observations of background groundwater quality are made based on historic and current analytical data as well as the C vs. T plots:

- Water quality in the shallow aquifer appears to have an increase in alkalinity, chloride, and conductivity
 concentrations and a decrease in sulphate concentrations. AM02-1 has limited analytical data to date, as such it
 is unknown if this will be a long-term trend.
- Leachate indicator parameter concentrations are, overall, stable in the deep portion of the overburden aquifer.

Samples collected from AM02-01 and MW01-16 are inferred to be representative of background groundwater quality.

6.3.2 Landfill Vicinity Groundwater Quality Results

The Landfill Vicinity wells are installed at the property boundary in the immediate vicinity of the Landfill and immediately downgradient of the Landfill footprint (Figure 3). These monitoring wells represent Site compliance with respect to Landfill-derived impacts migrating off-Site.

The Landfill Vicinity wells network includes:

- Shallow: EBA04-7, HBT94-1, HBT94-3
- Deep: EBA04-1 (tap), EBA04-6, HBT94-2

The 2022 analytical results for samples collected from these monitoring wells are summarized in Tables 4 and 5. Based on the concentrations of leachate indicator parameters (Appendix I, Table I-2) and C vs. T plots (Appendix J, Figures J-3 and J-4), the following is inferred:

 Leachate indicator parameter concentrations in the Landfill Vicinity wells are, with the exception of EBA04-1, consistently greater than background which indicates the presence of Landfill-derived impacts.

- Concentration of leachate indicator parameters at EBA04-01 are generally comparable to background, with the only exceptions being dissolved iron and vanadium concentrations.
- The C vs. T plots show recent increasing trends of conductivity, dissolved manganese, and sulphate at EBA04-07. All other parameters are, overall, consistent with no clear increasing or decreasing trends.

Overall, impacts are most pronounced at EBA04-07, located in shallow portion of the aquifer northeast of the waste mound. Impacts are generally more pronounced in the shallow monitoring well in each nested pair.

6.3.3 Block J Vicinity Groundwater Quality Results

The Block J Vicinity wells are installed at the Site's property boundary in the immediate vicinity of Block J (Figure 3). These monitoring wells are located in a cross-gradient position to the Landfill. These monitoring wells represent Site compliance with respect to Landfill-derived impacts migrating off-Site.

The Block J Vicinity wells network includes:

- Shallow: AG99-06, EBA11-1, EBA11-2, EBA11-3, EBA11-4
- Deep: MW04-19, MW08-21

The 2022 analytical results for samples collected from these monitoring wells are summarized in Tables 4 and 5. Based on the concentration of leachate indicator parameters (Appendix I, Tables I-3 and I-4) and C vs. T plots (Appendix J, Figures J-5 to J-8), the following is inferred:

- Concentrations of leachate indicator parameters at EBA11-1 are significantly elevated relative to background
 groundwater quality and the other Block J monitoring wells. Groundwater quality at EBA11-1 is likely affected by
 the infiltration of leachate impacted surface water in the SWM Pond.
- Non-metal leachate indicator parameters at the remaining Block J Vicinity wells were slightly elevated above background in 2022. The concentration of vanadium has consistently been above background at MW04-19.
- Concentrations of sulphate spiked notability in late 2022 in EBA11-4. No other leachate indicator parameters showed a comparable trend at EBA11-4 during this time.
- With the exception of EBA11-1, leachate indicator parameter concentrations at the Block J Vicinity wells have been consistent over time and are similar to background groundwater quality.

Concentrations of leachate indicator parameters increased significantly at EBA11-1 in late 2019 following the commissioning of the SWM Pond. Surface water that has been impacted by leachate seeps is directed to the SWM Pond where it infiltrates to the subsurface. Prior to construction of the pond in 2019, leachate impacted surface water travelled down the surface water ditch adjacent to Argonaut Road. As shown in Figures 6 and 7, the Block J Vicinity wells are located cross-gradient to the inferred groundwater flow path from the landfill, but are directly downgradient from the SWM Pond.

Continued monitoring is recommended to observe the evolution of water quality at the Block J monitoring wells. It is anticipated that groundwater quality at EBA11-1 will improve now that the final cover has been applied to the Landfill. These measures will minimize precipitation infiltration to the Landfill, resulting in a significantly lower rate of leachate generation. The final cover will also significantly increase the clean surface water runoff from the landfill footprint that flows to the pond resulting in increased infiltration of clean surface water upgradient of EBA11-1.

6.3.4 Downgradient Off-Site Groundwater Quality Results

The Downgradient Off-Site wells are the monitoring wells installed outside of the Site's property boundary and downgradient, east, and southeast, of the Landfill (Figure 3). These monitoring wells represent Site compliance with respect to Landfill-derived impacts migrating off-Site.

The Downgradient Off-Site wells network includes:

- Shallow: MW02-18, MW03-18, MW06-21, MW07-21
- Deep: AG99-01, AG99-02, AG99-04, AG99-05

The 2022 analytical results for samples collected from these monitoring wells are summarized in Tables 4 and 5. Based on the concentration of leachate indicator parameters (Appendix I, Tables I-5 and I-6) and C vs. T plots (Appendix J, Figures J-9 to J12) the following is inferred:

- Elevated leachate indicator parameter concentrations are most apparent at shallow monitoring well, MW02-18.
 Concentrations of alkalinity, chloride, conductivity, TDS, iron, and manganese are elevated well above background.
- Concentrations of alkalinity, conductivity, TDS, and vanadium are slightly elevated at the remaining Downgradient Off-Site wells while concentrations of chloride, iron, manganese, and sulphate are generally comparable.
- Leachate indicator parameter concentrations at MW02-18 have been variable over the past several years but do
 not show any obvious increasing or decreasing trends.
- Concentrations are generally consistent at the remaining Downgradient Off-Site wells.

Overall, the monitoring results from the Downgradient Off-Site wells show Landfill-derived impacts are present at the shallow monitoring well MW02-18. Results from the remaining wells show that minor impacts may be present but are generally limited and are not worsening.

Figure 2 illustrates the approximate location of an historical dumping area. MW02-18 is located within the dumping area. Impacts noted at MW02-18 may be from a combination of the Landfill and historical dumping.

6.4 Groundwater Geochemical Characteristics

Figure 10 presents a trilinear piper plot for groundwater and surface water monitoring locations using analytical data from the November 2022 monitoring event.

The plot provides a means of comparing geochemical fingerprints between monitoring locations. Major cation and anion concentrations are plotted on trilinear (triangular) diagrams as percentages and geochemical patterns can be discerned by comparing the relative locations of samples on the plot. Locations that plot close to one another are characterized by similar major ion geochemistry and vice versa.

For the purposes of this assessment, the piper plot has been employed as an additional line of evidence to support identification of regions where potential MSW Landfill-derived impacts on groundwater may have occurred. Based on GHD's experience with similar MSW landfills, leachate typically plots in the central portion of a piper plot. Conversely, unimpacted groundwater typically plots in the left corner.

The following observations are drawn based on Figure 10:

- Background monitoring wells and the majority of the groundwater monitoring wells plot in the leftmost corner of
 the diamond. This is inferred to represent un-impacted groundwater and shows that the major ion chemistry of the
 majority of locations are similar to background.
- Block J Vicinity monitoring well EBA11-1 plots is upwards and to the right of cluster of un-impacted wells. This
 indicates that the geochemical fingerprint of this well has been altered. Based on the location of EBA11-1,
 cross-gradient of the landfill and downgradient of the SWM POND, groundwater impacts are inferred to be due to
 infiltration of leachate impacted surface water in SWM Pond rather than impacts from the Landfill.
- Landfill Vicinity and Downgradient Off-Site wells HBT94-2, HBT94-1, and MW02-18 plot in locations shifted towards the central portion of the diamond. This shows that the geochemistry at these locations may have been influenced by Landfill leachate. It is noted that the shift between background and the Landfill Vicinity wells is not significant. This indicates that the difference in geochemical fingerprints (i.e., major ion proportions) and leachate impacts are minor.

6.5 Surface Water Quality

The surface water monitoring network includes two off-Site monitors located approximately 1.1 and 1 km east, downgradient, of the Site, Cold Creek tributary (SW-1) and Unnamed Pond (SW03-17) as well as the SWM Pond located on the Block J property. The surface water monitoring locations are presented on Figure 2.

Surface water samples at SW-1 and SW03-17 were collected quarterly in 2022. The monitoring events occurred February 22, May 23, August 23, and November 22, 2022. Surface water samples were collected at the SWM Pond on November 22, 2022. The SWM Pond was dry during the other monitoring events in 2022. SW-1 was dry during the August 2022 event and SW03-17 was dry during the February 2022 event.

Water quality results were assessed for evidence of Landfill-derived impacts. Surface water analytical results are presented in Table 6 and analytical table notes are presented in Table 7. Summary tables including current leachate indicator parameter concentration ranges are included in Appendix I (Table I-7). C vs. T plots of the leachate indicator parameters were used to support this assessment and are presented in Appendix J (Figures J-13 and J-14).

Figure 10 presents a trilinear piper plot for select groundwater and surface water monitoring locations using analytical results from the November 2022 monitoring event.

At this time, monitoring of background surface water conditions is not conducted for the Site as an appropriate background surface water monitoring location does not appear to exist in the vicinity of the Site. Surface water quality at the Site is assessed based on concentrations of leachate indicator parameters in surface water and the assumption that background surface water quality at the Site is similar to background groundwater quality at AM02-01 and MW01-16.

Leachate indicator parameter concentrations in SW-1 and SW03-17 are generally comparable to or lower than background groundwater quality with the exception of iron, manganese, and very slightly elevated chloride. In the absence of other elevated parameters, elevated concentrations of iron and manganese are interpreted to be due to natural variation between background groundwater and downgradient surface water. Slightly elevated chloride may be due to road-salt or natural variation.

Leachate indicator parameter concentrations at the SWM Pond are notably elevated in comparison to background groundwater quality. This provides evidence that surface water in the SWM Pond has been influenced by the Landfill.

The following observations are drawn based on the Piper Plot presented on Figure 10:

- Surface water quality in SWM Pond, plots in the upper right portion of the diamond which indicates significant
 alteration of the geochemical fingerprint when compared to background groundwater. Considering the elevated
 concentrations and changes to major ion percentages, Landfill-derived impacts are interpreted to be present.
- Surface water quality in SW-1 and SW03-17 plot in a location away from the background, un-impacted locations. This is not, however, interpreted to be related to Landfill-derived impacts. As shown above and in Table 6, concentrations of general chemistry and metals ions are very low in in both SW-1 and SW03-17. Thus, the slightly elevated chloride results in a large shift on the Piper Plot. This is due to the very low concentration and not Landfill-impacts.

As previously discussed, there is no direct surface water discharge from the Site to the ephemeral tributaries east of the Site. The depth of groundwater in the vicinity of the tributaries is unknown and as such the discharge of groundwater to the tributaries cannot be confirmed without further investigation. However, there is no evidence of Landfill impacts, so additional investigation is not warranted at this time.

7. Compliance Assessment

A compliance assessment of groundwater analytical concentrations at the Site was completed using the following applicable BC Contaminated Sites Regulation (CSR) standards:

- Schedule 3.2 Generic Numerical Water Standards Column 3 for the protection of freshwater aquatic life (FAW)
- Schedule 3.2 Generic Numerical Water Standards Column 6 for the protection of drinking water (DW)

A compliance assessment of surface water analytical concentrations at the property boundary monitoring locations were completed using the following applicable WQGs:

Approved, Working and Source WQG's for drinking water (DW) and freshwater aquatic life (FAW)

7.1 Groundwater

Background groundwater (AM02-01 and MW01-16) analytical results were less than the applicable CSR standards during all four monitoring events in 2022.

The following parameter concentrations were greater than background concentrations and their applicable CSR standards (Tables 4 and 5) during one or more 2022 monitoring events:

- AG99-02: dissolved vanadium
- EBA11-1: nitrate, nitrite/nitrate
- HBT94-1: ammonia, dissolved manganese
- HBT94-2: ammonia
- MW02-18: ammonia, dissolved manganese

As discussed in the preceding sections, Landfill-derived impacts have been identified in the Landfill Vicinity wells. The observed CSR exceedances of dissolved manganese at HBT94-1 are inferred to be Landfill-related. It is unclear what portion of impacts at MW02-18 can be attributed to the Landfill versus the historic dumping area, however, the Landfill cannot be ruled out as at least a partial contributor to the CSR exceedances observed at this monitoring well. As discussed in Section 5.3.3, CSR exceedances at EBA11-1 are inferred to be due to the infiltration of impacted surface water from SWM Pond, rather than Landfill-derived impacts.

Concentrations of vanadium at AG99-02 have consistently exceeded or come close to exceeding CSR standards. One exceedance occurred in 2022, during the August 2022 monitoring event. The source of elevated vanadium at this well is unknown, but as elevated vanadium concentrations have not been observed in other leachate impacted monitoring wells, the elevated vanadium concentrations at AG99-02 are not inferred to be caused by Landfill-derived impacts.

7.2 Surface Water

The surface water monitoring network includes three surface water locations (SW-1, SW03-17 and SWM Pond) (Figure 2). Analytical results from SW-1 and SW03-17 were compared to WQGs. Analytical results from the SWM Pond were compared to CSR standards, per the OC.

The following parameters were reported in greater concentrations than their applicable WQGs (Table 6a) and CSR standards (Table 6b) during one or more 2022 monitoring events at the following monitoring wells:

- SW-1: field pH, field temperature, total alkalinity, dissolved aluminum, manganese
- SW03-17: field temperature, total alkalinity, manganese
- SWM Pond: nitrate, nitrite/nitrate

Elevated concentrations of parameters indicative of Landfill-derived impacts were not identified at SW-1 or SW03-17. As such, CSR exceedances at both locations were inferred to be due to natural surface water quality. At SW-1, field

pH was below the WQG for FAW through the February, May and August monitoring events, indicating more acidic water in the Cold Creek tributary during this period. This corresponds well with low alkalinity reported at in SW-1 and SW03-17 which is due to natural causes.

As previously discussed, Landfill-derived impacts are noted within the SWM Pond. Consequently, exceedances of CSR standards in the SWM Pond appear to be attributed to the Landfill. After Landfill closure and application of the final cover, the pond will receive runoff from the final cover system and will thus no longer be impacted by leachate seeps from the Landfill side slopes. It is anticipated that this will improve surface water quality as well as groundwater quality in the vicinity of the SWM Pond.

8. Summary

The following summarizes the findings of the Annual Report:

Site Operations

- The CRWMC Landfill reached capacity and ceased disposal of waste in May 2022. The Site now operates as a transfer station, with all MSW transferred to the Comox Valley Waste Management Centre (CVWMC) for disposal.
- Full closure of the Landfill was undertaken in 2022, with the installation of 31 vertical LFG wells and a LLDPE geomembrane cover.
- Approximately 25,303 tonnes of material were received from the Campbell River wasteshed, of which, 1,393 tonnes of non-MSW materials were diverted by customers, and 23,910 tonnes of MSW were accepted. Of that, 21,209 tonnes of MSW were transferred to the CVWMC, and 2,201 tonnes of MSW was landfilled at the CRWMC in 2022. An additional 4,963 tonnes of recycled/diverted materials and 1,067 tonnes of clean fill were received, as measured over the scale.

Groundwater Flow Patterns

- Groundwater was observed to flow towards the east across the Site.
- Site water table was found to fluctuate seasonally between 0.41 to 5.91 m with a median fluctuation of 1.55 m.
- Groundwater elevations at the Site in 2022 were consistent with the elevations observed in 2021 and 2020.
 Groundwater elevations across the Site showed a decreasing trend between 2017 and 2019 but have since stabilized.

Groundwater Quality

- No Landfill-derived impacts were observed in groundwater quality at background monitoring wells AM02-1 and MW01-16.
- Leachate impacts continue to be observed in groundwater at monitoring wells located in the Landfill Vicinity monitoring wells EBA04-6, EBA04-7, HBT94-1, and HBT94-2. Dissolved manganese concentrations were greater than the CSR DW standards during the August and November monitoring events in 2022 at HBT94-1.
- Concentrations of leachate indicator parameters at EBA11-1 are significantly elevated relative to background
 groundwater quality and the other Block J monitoring wells. Groundwater quality at EBA11-1 is likely affected by
 the infiltration of leachate impacted surface water in the SWM Pond.
- With the exception of EBA11-1, groundwater quality results from the Block J Vicinity wells are stable and do not show landfill-derived groundwater impacts.
- Ammonia and dissolved manganese concentrations at MW02-18 were greater than the applicable CSR standards throughout 2022. It is noted that monitoring well MW02-18 is located adjacent to a historic dumping ground, therefore, impacts noted at MW02-18 may be from a combination of the Landfill and historical dumping.

- Deep downgradient groundwater quality southeast of the Site at AG99-01, AG99-02, AG99-04, and AG99-05 remains generally stable over time with minimal leachate impacts observed.
- The source of vanadium in groundwater quality at AG99-02 is not known at this time but is unlikely related to Landfilling activities.
- It is anticipated that groundwater quality at EBA11-1 will improve now that the final cover has been applied to the Landfill. These measures will minimize precipitation infiltration to the Landfill, resulting in a significantly lower rate of leachate generation. The final cover will also significantly increase the clean surface water runoff from the landfill footprint that flows to the SWM Pond resulting in increased infiltration of clean surface water upgradient of EBA11-1. The cover will also prevent any leachate seeps from mixing with surface water and being directed to the SWM Pond.

Surface Water Quality

- Based on the results of surface water quality monitoring conducted in 2022 at SW-1 (tributary of Cold Creek), and SW03-17 (unnamed pond upstream of SW-1) the presence of leachate impacts is not suspected.
- The SWM Pond was sampled in November 2022. Water quality in the SWM Pond appears to be impacted by Landfill activities, with concentrations of several leachate indicator parameters similar to typical MSW leachate.
 Water quality in the SWM Pond has been affected by discharge from the side slope seeps which had been rerouted from Argonaut Road.
- It is anticipated that surface water quality in the SWM Pond will improve now that the final cover has been applied to the Landfill. These measures will minimize precipitation infiltration to the Landfill, resulting in a significantly lower rate of leachate generation. The final cover will also significantly increase the clean surface water runoff from the landfill footprint that flows to the SWM Pond. The cover will also prevent any leachate seeps from mixing with surface water and being directed to the SWM Pond.

9. Recommendations

Based on the findings of the Annual Report, the following recommendations are made:

- Continue the groundwater and surface water monitoring programs (Appendix K) on a quarterly basis.
- Install the LFG blower and flare and commission the LFG collection and management system.
- Complete the landfill gas monitoring program as described in the Closure Plan

All of Which is Respectfully Submitted,

GHD

David R Barton Hydrogeologist in Training

+1 604 248-3984 david.r.barton2@ghd.com PROVINCE
OF

R. A. MOLENHUIS
56844

BRITISH
COLUMBIA
SCIEN
April 28, 2023

Allan Molenhuis, P. Geo. (ON and BC) Scientist

+1 519 340-3872 allan.molenhuis@ghd.com

PERMIT TO PRACTICE
GHD LIMITED

PRESIDENCE # 141662
DATE 2023-04-28

PERMIT NUMBER: 1002509
Engineers and Separterillals Dillah Calumbia

10. References

- AECOM, December 2012. 2012 Comox-Strathcona Solid Waste Management Plan.
- BC Water Resource Atlas, accessed October 30, 2015
- Water, Air and Climate Change Branch Ministry of Water, Land and Air Protection Province of British Columbia, 2013.

 British Columbia Field Sampling Manual.
- British Columbia Ministry of Environment, 1996. BC MOE Guidelines for Environmental Monitoring and Municipal Solid Waste Landfills.
- British Columbia Ministry of Environment, March 1999. Ambient Water Quality Guidelines for Zinc Overview.
- British Columbia Ministry of Environment, December 2, 2003, Operational Certificate MR-02401.
- British Columbia Ministry of Environment, June 2016, Landfill Criteria for Municipal Solid Waste, 2nd Edition.
- British Columbia Ministry of Environment and Climate Change Strategy, October 31, 2017. Protocol 21 for Contaminated Sites Water Use Determination, Version 2.0.
- British Columbia Ministry of Environment and Climate Change Strategy. 2020. B.C. Source Drinking Water Quality Guidelines: Guideline Summary. Water Quality Guideline Series, WQG-01. Prov. B.C., Victoria B.C.
- British Columbia Ministry of Environment and Climate Change Strategy. 2021. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- B.C. Ministry of Environment and Climate Change Strategy 2021. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C.
- CH2MHILL, February 2009. Campbell River Waste Management Centre Closure Plan First Draft.
- City of Campbell River, October 24, 2018. Zoning Bylaw No. 3250, 2006
- Comox Valley Regional District, October 2012. Memorandum Agricultural Land Reserve boundaries at the Campbell River Waste Management Centre.
- Conestoga-Rovers & Associates, December 2010. Landfill Gas Generation Assessment, Campbell River Waste Management Centre.
- Dydo, P., Turek, M., Trojanowska, J., 2005. The Concept of Utilizing a Boron-containing Landfill Leachate by Means of Membrane Techniques.
- GHD Limited, April 2017. 2016 Annual Operations and Monitoring Report, Campbell River Waste Management Centre, Campbell River, BC.
- GHD Limited, June 2017. Updated Landfill Gas Management Facilities Design Plan.
- GHD Limited, February 2018. 2017 Design, Operations, and Closure Plan, Campbell River Waste Management Centre. Campbell River, BC.
- GHD Limited, May 2018. 2017 Annual Operations and Monitoring Report, Campbell River Waste Management Centre, Campbell River, BC.
- GHD Limited, August 2018. Surface Water Management Works Issued for Construction Drawings.
- GHD Limited, April 2019. 2018 Annual Operations and Monitoring Report, Campbell River Waste Management Centre, Campbell River, BC.
- GHD Limited, October 2020. Hydrogeologic Impact Assessment, Campbell River Waste Management Centre, Campbell River, BC.

- GHD Limited, April 2020. 2019 Annual Operations and Monitoring Report, Campbell River Waste Management Centre, Campbell River, BC.
- GHD Limited, October 2020. Closure and Upgrading Plan, Campbell River Waste Management Center Landfill.
- GHD Limited, February 2022. 2021 Closure and Post-Closure Estimates, Comox Strathcona Waste Management.
- Greene, A.R., J.S. Scoates and D. Weis, 2005. Wrangellia Terrane on Vancouver Island, British Columbia: Distribution of Flood Basalts with Implications for Potential Ni-Cu-PGE Mineralization in Southwestern British Columbia.
- Guthrie R. H. and C. R. Penner, 1993. Vancouver Island Surficial Geology.
- Guthrie, R. H. 2003. Vancouver Island Bedrock Geology.
- Health Canada, 1978. Guidelines for Canadian Drinking Water Quality: Technical Document-Iron.
- Health Canada, 1987. Guidelines for Canadian Drinking Water Quality: Technical Document-Manganese.
- Kangasniemi, B. J., November 1989. Campbell River Area Middle Quinsam Lake Sub-Basin Water Quality Assessment and Objectives. Water Management Branch, Ministry of Environment.
- SCS Engineers, December 2014. Memorandum, Campbell River Waste Management Centre Campbell River Landfill Site Life Estimate Update.
- SCS Engineers, February 2014. Campbell River Waste Management Centre Updated Design, Operations, and Closure Plan.
- Tetra Tech EBA, 2014. Campbell River Waste Management Centre 2013 Annual Water Quality Monitoring Report, Campbell River Waste Management Centre, Campbell River, BC.
- United States Environmental Protection Agency 530/510-86-054, 1986, US EPA Subtitle D Study Phase I Report.

Tables

Table 1 Waste Tonnage and Diversion 2022 Operations and Monitoring Report Campbell River Waste Management Centre Comox Strathcona Waste Management

	Units	2022
WASTE DISCHARGED TO LANDFILL (1)		
Waste from CRWMC Wasteshed		
Construction Waste	tonnes	1598
ICI & Household	tonnes	18132
Municipal Waste by Contract	tonnes	4586
Volunteer Clean Up	tonnes	17
Asbestos	tonnes	134
Streetside cleanup/illegal dumping	tonnes	2
Mattresses	tonnes	183
Clean Fill - Disposed	tonnes	652
	Subtotal	25303
Non-MSW materials diverted from m	ixed loads ⁽²⁾	1393
Total MSW accpeted at CRV		23910
MSW Transferred to CVWMC	for disposal	21709
Total MSW Discharge	d to Landfill	2201
RECYLED/DIVERTED MATERIAL ⁽¹⁾		
Yard Waste	tonnes	0
Commercial Cardboard/Recycling	tonnes	22
Scrap Metal Sales	tonnes	881
Battery Sales	tonnes	29
Clean Wood Waste	tonnes	0
Drywall/Gypsum waste	tonnes	520
Cut Grass & Raked Leaves	tonnes	778
Outbound transfer of wood waste	tonnes	2732
Total Recycled/Diver	ted Material	4963
Clean fill used as cover		1067
Total Mater	rial Diverted	6030

Notes:

- (1) Campbell River Waste Management Centre Yearly Tonnage Summary
- (2) Non-MSW materials diverted by customers after passing over the scale CRWMC Campbell River Waste Management Centre CVWMC Comox Valley Waste Management Centre

MSW - Municipal Solid Waste

Table 2 Page 1 of 1

Waste Area Population and Projected Population 2022 Annual Operations and Monitoring Report Campbell River Waste Management Centre Campbell River, British Columbia

Year	Estimated Population ⁽¹⁾⁽²⁾
2022	47,761
2023	48,172
2024	48,586
2025	49,004

Notes:

 $^{^{(1)}}$ 2021 population sourced from Stats Canada for City of Campbell River, Village of Sayward, Village of Gold River, Strathcona electoral areas A, B, C, and D, and adjacent IRs

⁽²⁾ Average Annual population growth rate of 0.86% (Stats Canada, 2021)

Table 3

Well Completion Details and Hydraulic Monitoring 2022 Annual Operations and Moritoring Report Campbell River Waste Management Centre Campbell River, British Columbia

	Screened Lithology		Sand and gravel	Sand	Sand and gravel	Silty sand	Silty Sand	Gravel and sand	Sand	Gravel	Gravel, some sand and cobbles	Gravel, some sand and cobbles	Sand, trace silt	Sand, trace silt	Sand	Sand and gravel	Sand and gravel	Sand and gravel	Sand, trace/some silt	Sand, trace gravel	Sand, trace gravel, trace/some silt	Sand, trace silt and gravel	Sand, some silt	Gravel
	Screened Unit		Shallow overburden	Deep overburden	Deep overburden	Deep overburden G	Deep overburden G	Deep overburden	Shallow overburden	Shallow overburden	Deep overburden	Deep overburden	Shallow overburden	Shallow overburden	Shallow overburden	Shallow overburden Sa	Shallow overburden	Deep overburden	Shallow overburden					
November 21-22, 2022	Water Elevation	(m AMSL)	148.75	114.29	110.20	112.20	113.26	112.01	111.48	115.60	113.23	112.90	111.16	109.72	DRY	TAP	111.15	111.29	111.63	112.06	109.62	OBSTRUCTION ⁽²⁾	115.04	DRY
November	Depth to Water	(m btor)	38.15	24.50	21.90	24.12	26.37	23.32	23.33	28.60	26.62	23.54	20.93	22.98	DRY	TAP	25.19	25.12	23.14	22.13	23.52	OBSTRUCTION ⁽²⁾	27.01	DRY
August 22-23, 2022	Water Elevation	(m AMSL)	154.66	113.29	110.56	111.68	112.47	111.35	110.85	113.94	112.58	112.25	110.54	109.56	154.70	TAP	110.51	110.65	111.58	110.50	109.26	114.05	113.90	DRY
August 2	Depth to Water	(m btor)	32.24	25.50	21.54	24.64	27.16	23.98	23.96	30.25	27.27	24.19	21.55	23.14	32.16	TAP	25.83	25.76	23.19	23.69	23.88	27.93	28.15	DRY
May 23-24, 2022	Water Elevation	(m AMSL)	150.00	113.96	110.83	112.03	112.80	111.55	111.07	114.07	112.77	112.44	110.78	110.52	DRY	TAP	110.67	110.82	112.72	111.18	109.99	114.47	114.50	DRY
May 23-	Depth to Water	(m btor)	36.90	24.83	21.27	24.29	26.83	23.78	23.74	30.12	27.08	24.00	21.31	22.17	DRY	TAP	25.67	25.59	22.05	23.01	23.14	27.52	27.55	DRY
February 21-22, 2022	Water Elevation	(m btor)	151.76	115.52	112.12	120.39(1)	114.15	112.91	112.38	115.32	114.12	113.79	112.08	111.11	DRY	TAP	112.07	112.22	113.42	111.72	110.68	DRY	114.24	DRY
February	Depth to Water	(m btor)	35.14	23.27	19.98	15.93(1)	25.48	22.43	22.43	28.87	25.73	22.65	20.01	21.58	DRY	TAP	24.27	24.18	21.36	22.47	22.45	DRY	27.81	DRY
Screen	Length	(w)	3.1	1.5	1.5	3.1	3.1	3.1	3.1	2.0	2.0	7.0	0.9	3.0	15.0		1.5	1.5	3.1	3.1	3.1	3.0	2.0	2.0
	(m AMSL)	to	145.10	106.13	104.89	100.96	106.71	105.76	94.27	95.69	88.85	91.44	82.09	107.69	152.86		96.74	104.40	106.07	104.01	104.13	107.98	99.05	115.26
Screened Interval	(m A	from	148.15	107.65	106.42	104.01	109.76	108.81	97.32	97.69	90.85	98.44	88.09	110.69	167.86		98.24	105.90	109.17	107.09	107.23	110.98	101.05	117.26
Screene	BTOR)	to	41.64	32.66	27.21	35.36	32.92	29.57	40.54	48.50	51.00	45.00	20.00	25.00	34.00		39.60	32.00	28.70	30.18	29.00	34.00	43.00	27.00
	m)	from	38.60	31.14	25.68	32.31	29.87	26.52	37.49	46.50	49.00	38.00	44.00	22.00	19.00		38.10	30.50	25.60	27.10	25.90	31.00	41.00	25.00
Total Depth	of Well	(m btor)	43.17	32.66	27.21	36.12	32.92	30.48	42.67	48.50	51.51	45.42	20.90	45.11	33.20		39.60	32.00	28.96	30.18	29.57	34.00	44.00	27.00
Top of Riser	Elevation	(m AMSL)	186.90	138.79	132.10	136.32	139.63	135.33	134.81	144.19	139.85	136.44	132.09	132.69	186.86		136.34	136.40	134.77	134.19	133.13	141.98	142.05	142.26
2400	ordinates) Easting (x)	7 331106.575	331913.490	332132.200	331969.010	2 331957.118	5 332069.071	332003.177	5 331815.529	1 331937.280	2 332048.523	332133.846	5 332073.874	2 331105.831		331952.509	331954.022	1 331995.662	332038.159	5 332061.625	331798.592	3 331796.264	4 331791.155
	9	Northing (y)	5542073.127	5542104.290	5542306.040	5542518.573	5542011.922	5542197.335	5542475.019	5542063.675	5542017.821	5542190.662	5542314.710	5542635.565	5542076.112		5542397.539	5542370.669	5542468.941	5542801.160	5542698.635	5542161.126	5542157.473	5542148.604
	Location		MW01-16	MW02-18	MW03-18	MW04-19	MW06-21	MW07-21	MW08-21	AG99-01	AG99-02	AG99-04	AG99-05	AG99-06	AM02-01	EBA04-1	EBA04-6	EBA04-7	EBA11-1	EBA11-3	EBA11-4	HBT94-1	HBT94-2	HBT94-3

Notes:

(1) The depth to water measured at MW04-19 in February 2022 was likely a measurement error.

(2) Opph to water at HBT94-1 could not be measured in November 2022 due to a tubing obstruction. The obstruction was removed and a sample was collected.

(3) Markes below top of riser.

(4) MAISL. metres above mean sea level

(5) In markes above mean sea level

(6) In markes above mean sea level

(7) In markes above mean sea level

(8) In markes above mean sea level

(9) In markes above mean sea level

(9) In markes above mean sea level

(9) In markes above mean sea level

(10) In markes above mean sea level

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample Location:	L			'	9-01	н		66		
Sample ID: Sample Date:		BC CSR Schedule 3.2	WG-11209296-220222-MJ-14 02/22/2022	MJ-14 W G-11209296-240522-NT-15 05/24/2022	WG-11209296-220822-NT-03 08/22/2022	WG-11209296-211122-NT-03 11/21/2022	WG-11209296-220222-MJ-18 02/22/2022	WG-11209296-240522-NT-17 05/24/2022	WG-11209296-230822-NT-11 V	WG-11209296-211122-NT-06 11/21/2022
Parameters	Units		2							
Field Parameters Conductivity, field Oxidation reduction potential (ORP), field	uS/cm mill ivolts			232 168 168	225 292	168	280 325	195 196	142 259	151 146 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
pm, recu Total dissolved solids, field (TDS) Turbidity, field	s.u. Deg C mg/L NTU		8.76 111 2.5	1.27 151 9.9	13.87 146 7.3	11.00 109 6.6	9.74 182 0.0	12.20 127 0.6	0.47 13.41 97 0.9	98 98 9.1
General Chemistry A leading, Judocome A leading, Judocome A leading, Judocome A leading, Judocome A leading, Leading Co. CO. 3) Controlled (elsowhed) Conductively Leading Comparity Flat Leading B Leading Self Lead	J.Gu J.Gu J.Gu J.Gu J.Gu J.Gu J.Gu J.Gu	250 1500 1500 1 1 1 1 1 1 1 1 1 1 1 1 1 1	92.9 ND (1.0) ND (1.0) ND (1.0) 14.3 18.8 ND (0.020) 89.3 10.2	115 ND (1.0) ND (1.0) 115 2.25 2.25 2.25 2.27 ND (0.020) 1.21 1.21 1.33 1.34 1.44	117 NN(1.0) NN(1.0) 117 3.68 2.45 2.45 ND (0.020) 114 3.18	98.9 ND (10) ND (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	152 116 ND (10) 164 151 150 ND (0,020) 2,14 181	100 ND (1.0) ND (1.0) 100 131 2.22 ND (0.020) 853 2.22 108	78.3 ND(1.0) ND(1.0) 78.3 1.69 1.69 ND (0.020) 7.62 2.22 1.10	87.7 ND (10) ND (10) 1.0 17.4 17.4 18.4 ND (1020) 85.6 2.257 118
Nutrients Ammoria-N Mittale (as N) Mittale (as N) Mittale (as N) Mittale (as N)	mg/L mg/L mg/L	- [a] 10 400 1 [c] 10 400	ND (0.0050) 0 0.127 ND (0.0010) 0.127	ND (0.0050) 0.228 ND (0.0010) 0.228	ND (0.0050) 0.291 ND (0.0010) 0.291	ND (0.0050) 0.202 ND (0.0010) 0.202	ND (0.0050) 0.203 ND (0.0010) 0.203	ND (0.0050) 0.149 ND (0.0010) 0.149	ND (0.0050) 0.195 ND (0.0010) 0.195	ND (0.0050) 0.177 ND (0.0010) 0.177
Dissolved Makes Repair Advances of Makes Repair Activation (dissolved) Advanced (dissolved) By Marine (dissolved) Carcelland (dissolved) Carcelland (dissolved) Carcelland (dissolved) Carcelland (dissolved) Carcelland (dissolved) Carcelland (dissolved) Mary Davies (cissolved) The (dissolved) Throman (dissolved) Throman (dissolved) Mary Davies (cissolved) Mary Davi		9800 100 100 100 100 100 100 100	3.2 (1.6) (1	2.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	9.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.9 1.0 0.7 1.0 0.7 1.0 0.7 1.0 0.7 0.7	5.2 ND (6.1) 1.88 1.78 ND (10.03)	4 3 4 88 4 88 8 8 8 8 8 8 8 8 8 8 8 8 8	6.11 (0.1)	3.8 1.00 (0.1) 1.00 (0.1) 1.00 (0.0) 1

Table 4
Groundwater Analytical Results. General Chemistry, Nutrients and Metals 2022 Annual Operations and Monitoring Report Campbell River Waste Management Centre Campbell River, British Columbia

		Schedule 3.2	WG-11209296-220222-MJ-16 WG-11209296-240522-NT-20 02/22/2022		08/23/2022	11/22/2022	02/22/2022	05/23/2022	05/23/2022	08/23/2022	08/23/2022	11/22/2022
Parameters	Units	a b							Duplicate		Duplicate	
Field Parameters Conductivity, field Oxidation reduction notantial (ORP) field	uS/cm		99	112	101	100	122	255	255	91	91	65 146
	s.u.		8.19	8.37	8.51	8.55	8.30	7.72	7.72	8.70	8.70	8.51
Temperature, field Total dissolved solids, field (TDS) Turbidity, field	Deg C mg/L NTU		10:10 64 0.0	12.45 73 0.6	13.79 66 0.0	9.83 65 1.7	7.51 7.9 10.0	13.49 166 1.3	13:49 166 1.3	15.49 59 0.6	15.49 59 0.6	9.46 42 1.8
			, ,					3 LG	B	ž č) () ()	, (
Alkalinity, bicarbonate Alkalinity, carbonate	mg/L mg/L		54.5 ND (1.0)	51.9 ND (1.0)	90.0 ND (1.0)	59.0 ND (1.0)	62.6 ND (1.0)	125 ND (1.0)	125 ND (1.0)	52.5 ND (1.0)	53.2 ND (1.0)	47.9 ND (1.0)
Alkalinity, hydroxide Alkalinity, hydroxide (as CaCO3)	mg/L mg/L		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1:0)	ND (1.0)	ND (1.0)	ND (1.0)
Alkalinity, total (as CaCO3) Chloride (dissolved)	mg/L		1 29	51.9	50.0	59.0	62.6	125	125	52.5	53.2	47.9
Conductivity	uS/cm ma/l	15	114 ND (0.020)	116 ND (0.020)	109 ND (0.020)	127 ND (0.020)	132 ND (0.020)	254 ND (0.020)	255 ND (0.020)	110 ND (0.020)	112 ND (0.020)	102 ND (0 020)
Hardness Cartaness	mg/L		53.6	51.3	51.4	55.3	63.2	131	130	52.3	54.9	47.6
Currant (ursouved) Total dissolved solids (TDS)	mg/L		64	57	85	90	74	158	154	8	85	77
Nutrients	l) and		O O O O ON	ND (0 00E0	0300 O CIN	(0000 O) GN	10000 ON	10200 O GIN	000 00 GW	(0.000 O) GIN	0000 O/ CIN	VID (0 00E0)
Ammonia-in Nitrate (as N)	mg/L		0.0972	0.122	0.144	0.156	0.0999	0.0860	0.0853	0.0678	0.0683	0.0945
Nitrite (as N) Nitrite Nitrate	mg/L mg/L	1 [c] 10 400	ND (0.0010) 0.0972	ND (0.0010) 0.122	ND (0.0010) 0.144	ND (0.0010) 0.156	ND (0.0010) 0.0999	ND (0.0010) 0.0860	ND (0.0010) 0.0853	ND (0.0010) 0.0678	ND (0.0010) 0.0683	ND (0.0010) 0.0945
Dissolved Metals												
Aluminum (dissolved) Antimony (dissolved)			5.6 ND (0.1)	5.2 ND (0.1)	4.8 ND (0.1)	4.4 ND (0.1)	4 ND (0.1)	3.2.J ND (0.1)	3.J ND (0.1)	3.9 ND (0.1)	3.7 ND (0.1)	4.4 ND (0.1)
Arsenic (dissolved) Ranium (dissolved)				0.46	0.34	0.33	0.35	0.27	1.04	0.31	0.34	0.35
Beryllium (dissolved)				ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Boron (dissolved)				ND (0:05) ND (10)	ND (0.05) ND (10)	ND (0.05) ND (10)	ND (0.05) ND (10)	(0.05) 17	ND (0.05) 17	ND (0.05) 28	ND (0.05) 30	ND (0.05) 12
Cadmium (dissolved) Caesium (dissolved)	J/6n	[p]	ND (0.005) ND (0.01)	ND (0.005) ND (0.01)	ND (0.005) ND (0.01)	ND (0.005) ND (0.01)	ND (0.005) ND (0.01)	0.0067 ND (0.01)	0.0066 ND (0.01)	ND (0.005) ND (0.01)	ND (0.005) ND (0.01)	ND (0.005) ND (0.01)
Calclum (dissolved)				17800 ND (0.5)	17800	19000 ND (0.5)	21500 ND (0.5)	44400 ND (0.5)	44000 ND (0.5)	17900 ND (0.5)	18900 ND (0.5)	16200 ND (0.5)
Cobalt (dissolved)				ND (0.1)	ND (0.1)	ND (0.1)	ND (0:1)	0.13	20.7	ND (0:1)	ND (0.1)	ND (0.1)
Copper (dissolved) Iron (dissolved)				0.3 ND (10)	0.24 ND (10)	ND (0.2)	0.34 ND (10)	1.95 ND (10)	1.76 ND (10)	0.32 ND (10)	0.32 ND (10)	ND (02)
Lead (dissolved) Lithium (dissolved)				ND (0:05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)	ND (0.05) ND (1)
Magnesium (dissolved)				1660	1680	1910 MD/0.43	2300	4830 NP. (0.4)	4930 ND (04)	1840 ND (0.1)	1880 ND (0.1)	1750 NP (0.4)
Mercury (dissolved)				ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)
Motybdenum (dissolved) Nickel (dissolved)				0.124 ND (0.5)	0.119 ND (0.5)	0.099 ND (0.5)	0.128 ND (0.5)	0.073 J 1.22 J	0.075 J	0.147 ND (0.5)	0.144 ND (0.5)	0.145 ND (0.5)
Phosphorus (dissolved)				ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)
Rubidium (dissolved)				ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Selemium (dissolved) Silicon (dissolved)				3940	3910	3790	0.085	0.332 J 4620	0.255 J 4630	0.091	0.134	4030
Silver (dissolved)				ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Strontium (dissolved)				28.8	28.2	30.2	36.3	68.9	71.2	29.7	29.4	27.3
Sulphur (dissolved)				760 ND (0.2)	890 ND (0.2)	ND (500)	620 ND (0.2)	0690 ND (0.2)	800 ND (0.2)	089 ND (0.2)	880 ND (0.2)	ND (500)
Thallium (dissolved)				ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Tin (dissolved)				ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0:1)	ND (0.1)
Titanium (dissolved)				ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)
Uranium (dissolved)				0.024	0.025	0.033	0.039	0.132	0.131	0.039	0.041	0.027
Vanadium (dissolved) Zinc (dissolved)		3000 [b]	2.98 ND (1)	3.11 ND (1)	2:49 ND (1)	2.37 ND(1)	2.76 ND (1)	2:1 ND (1)	2.12 ND(1)	2.42 ND(1)	2.54 ND (1)	2.57 ND (1)
Zirconium (dissolved)	4		ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample Location:				66	11	н	н	11	11	
Sample ID: Sample Date:		BC CSR Schedule 3.2	WG-11209296-210222-MJ-06 WC	WG-11209296-230522-NT-05 WG-1 05/23/2022	WG-11209296-230822-NT-18 WG- 08/23/2022	WG-11209296-221122-NT-18 W	WG-11209296-230822-NT-06 VG-1120923/2022	WG-11209296-240522-NT-13 W 05/24/2022	WG-11209296-220822-NT-02 WG	WG-11209296-211122-NT-02 11/21/2022
Parameters	Units									
Field Parameters Conductivity, field Oxidation reduction potential (ORP), field Ph. field	uS/cm mill ivoits s.u.		77 260 7.06	275 230 7.52	193 290 7.64	68 151 8.41	1090 336 7.03	88 188 8.25	75 251 8.57	54 205 7.40
Temperature, field Total dissolved solids, field (TDS) Turbidity, field	Deg C mg/L NTU	1 1 1	526 50 41.6	11.49 179 52.1	13.66 126 52.7	8.70 44 44.2	15.85 631 95.7	12.71 57 0.4	23.47 49 0.0	8.17 35 2.1
General Chemistry A Walning, Location A Walning, Location A Walning, Location Alleaning, Type Council Alleaning, Type Council Alleaning, Location Christopie (et a.C.C.C.O.) Christopie (eisenwind) Christopie (eisenwind) Christopie (eisenwind) Christopie (eisenwind) Salling (eisenwind) Salling (eisenwind) Trial dissolved society (TOS)	Jów Jów Jów Jów Jów Jów Jów Jów Jów Jów	2850 11.5 P P P P P P P P P P P P P P P P P P P	3.8.6 ND (1.0) ND (1.0) 3.6.6 3.2.2 80.8 ND (0.000) 3.7.6 63.6 63.6	88.9 ND (1.0) ND (1.0) 88.9 275 ND (10000) 106 207 200	88.5 ND (1.0) ND (1.0) 88.5 15.4 22.4 ND (0.020) 96.0 16.5 16.5 16.5	61.8 ND (1.0) ND (1.0) 	66.0 ND (1.0) ND (1.0) 66.0 3.58 142 ND (0.000) 7.20 1.23 9.5	38.5 ND (1.0) ND (1.0) 88.5 0.85 84.6 ND (0.020) 2.87 2.87 6.27	43.2 ND (1.0) ND (1.0) ND (1.0) R2.2 O.85 0.85 0.85 0.82 ND (0.020) P.2.4 75	40.1 ND(1.0) ND(1.0)
Nutrients Ammorida-N Nitrae (sa N) Nitrae (sa N) Nitrae (sa N) Nitrien/Nitrae	mg/L mg/L mg/L	- [a] 10 400 1 [c] 10 400	ND (0.0050) 0.0792 ND (0.0010) 0.0792	ND (0.0050) 0.234 ND (0.0010) 0.234	ND (0.0050) 0.166 0.0016 0.168	ND (0.0050) 0.190 ND (0.0010) 0.190	ND (0.0050) 0.0536 ND (0.0010) 0.0536	0.0137 0.0480 ND (0.0010) 0.0480	ND (0.0050) 0.0554 ND (0.0010) 0.0554	ND (0.0050) 0.0447 ND (0.0010) 0.0447
Diseabled Media Autiminut (sesobed) Autiminut (sesobed) Autiminut (sesobed) Autiminut (sesobed) Autiminut (sesobed) Autiminut (sesobed) Bantun (sesobed) Bantun (sesobed) Bantun (sesobed) Bantun (sesobed) Consist (sesobed) Consis	7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 6 7 7 7 6 7 7 7 7 6 7	99000	4.2 ND (0.1) ND (0.1) ND (0.1) ND (0.1) ND (0.1) ND (0.0) ND (0.0)	3.5 ND (0.1) ND (0.1) ND (0.1) ND (0.1) SERIO SERIO ND (0.2) ND (0	3.8 ND (0.1) ND (0.1) ND (0.0) ND (0.00) ND (0	13.6 10.14 0.14 0.14 0.14 0.14 0.14 0.14 0.1	1	3.4 NO (0.1)	0.00 (0.1) ND (0.1) ND (0.0) ND (0.0)	2.5 N. Co. 28 O. 38 O. 38 O. 38 O. 38 O. 0. 38 O. 0. 18 O.

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample ID: Sample Date:		BC CSR Schedule 3.2		WG-11209296-210222-MJ-10 W	W G-11209295-240522-N I-12 05/24/2022	WG-11209296-230822-N1-21 W	WG-11209296-221122-NT-15	W G-11209296-210222-MJ-09 W	WG-11209296-240522-NT-11 05/24/2022	WG-11209296-230822-NT-20 08/23/2022	WG-11209296-221122-NT-14 11/22/2022
Parameters	Units	a DW	D b								
Flield Parameters Conductivity, field Oxidation reduction potential (ORP), field pH, field Tempeature, field	uS/cm millivolts s.u. Deg C	1111	1111	496 325 7.40 9.05	649 191 7.29 11.09	550 221 7.39 13.00	390 197 7.66 10.64	770 211 7.17 8.38	7.99 2.60 7.00 11.10	851 318 7.13 14.31	623 176 7.43 9.55
Total dissolved solids, field (TDS) Turbidity, field	mg/L NTU	1 1	1.1	323	416 0.8	352 0.8	253	495 1.5	511 0.9	544 0.4	399
General Chemistry Alkalimity, bicarborate Alkalimity, carborate Alkalimity, carborate Alkalimity, arguptorate Alkalimity, indrocode Alkalimity, indrocode (se CaCO3) Alkalimity, bindrocode (se CaCO3) Chloride dissolves)	7,6ш 7,6ш 7,6ш 7,6ш	1 1 1 1 1 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	308 ND (1.0) (1.0) ND (1.0) 308 3.64	328 ND (1.0) ND (1.0) 828 652	335 ND(1.0) ND(1.0) 336 11.3	252 ND (1.0) ND (1.0) 262 2.52	449 ND (10) (10) ND (10) 449 24.6	386 ND (1.0) ND (1.0) 386 25.9	386 ND (1.0) ND (1.0) 886 72.7	439 ND (1.0) ND (1.0) 439 45.8
Conductivity Fluoride Hardness Aufland (dissolved) Total dissolved solids (TDS)	ng/cm mg/L mg/cm	1.5	12121	562 ND (0.020) 279 3.62 3.49	615 ND (0.020) 360 6.22 4.08	649 ND (0.100) 346 14.2 416	496 ND (0.020) 239 2.52 295	ND (0.100) 405 14.7 497	775 ND (0.100) 410 10.0 462	919 ND (0.100) 438 11.5 604	998 ND (0.100) 451 12.7 534
Nutrients Ammonda-N Nitrate (ss N) Nitrate (ss N) Nitrate (ss N)	mg/L mg/L mg/L	1 6 - 6	[a] 400 [c] 400	ND (0.0050) 2.12 ND (0.0010) 2.12	ND (0.0050) 2.11 ND (0.0010) 2.11	ND (0.0050) 2.56 ND (0.0050) 2.56	ND (0.0050) 1.57 ND (0.0010) 1.57	0.0134 1.37 ND (0.0050) 1.37	0.0098 0.893 ND (0.0050) 0.893	0.0122 2.48 ND(0.0050) 2.48	0.0116 0.796 ND (0.0050) 0.796
Dissolved Metals Ad unimum (dissolved) Artimony (dissolved) Art genet (dissolved) Desire (desolved)	7 7 7 8 10 00 11	9500 6 10	- 06 26	1.5 ND (0.1) ND (0.1)	ND (1) ND (0.1) 0.13	1.4 ND (0.1) ND (0.1)	ND (1) ND (0.1) ND (0.1)	ND (1) ND (0.1) 0.13 4.7.4	ND (1) ND (0.1) 0.12	ND (1) ND (0.1) 0.12	ND (1) ND (0.1) 0.15
Barlum (dissolved) Beryllium (dissolved) Bismuth (dissolved) Boron (dissolved)	7 7 7 8	8 1 8	1.5	0.83 ND (0.1) ND (0.05) 31	ND (0.1) ND (0.05) 41	9.02 ND (0.1) ND (0.05) 92	5.65 ND (0.1) ND (0.05) 55	ND (0.1) ND (0.05) 298	ND (0.1) ND (0.05) 190	15.8 ND (0.1) ND (0.05) 180	18.2 ND (0.1) ND (0.05) 205
Cadmium (dissolved) Caesium (dissolved) Calcium (dissolved)	A A bi	s 1 1	<u>a</u> 1 1	0.0055 ND (0.01) 83700	0.0105 ND (0.01)	0.0095 ND (0.01)	0.0062 ND (0.01) 7.2600	0.0551 ND (0.01)	0.049 ND (0.01)	0.0515 ND (0.01)	0.0619 ND (0.01)
Chromium (alcoured) Chromium (alssolved) Cobalt (alssolved) Conner (filesolved)	1 d d d	20 (i) 20 (i)	0 4 5	ND (0.1)	0.055 0.055 ND (0.1)	ND (0.5) ND (0.1)	121 ND (0.1)	ND (0.5) 0.56 4.4	ND (0.5) 0.34	ND (0.5) 0.31	ND (0.5) 0.52 3.75
Copper (dissolved) Iron (dissolved) Lead (dissolved)	7 7 8 8 8 8	1000	E E	ND (0.5) ND (0.05)	ND (10) ND (0.05)	ND (10) ND (0.05)	ND (10) ND (0.05)	ND (10) ND (0.05)	ND (10) ND (0.05)	ND (10) ND (0.05)	ND (10) ND (0.05)
Lithium (dissolved) Magnesium (dissolved) Manganese (dissolved)	ug/L ug/L	1500		ND (0.1)	21300 21300 0.18	197.00 0.22	14000 ND (6.1)	1,2 24400 318	28700 298	1.2 26900 390	27700 450
Mercury (dissolved) Molybdenum (dissolved)	ug/L ug/L	250	10000	ND (0.005) ND (0.05)	ND (0.05) ND (0.05)	ND (0.005) ND (0.05)	ND (0.05)	ND (0.005) 0.1	ND (0.005) 0.097	ND (0.005) 0.095	ND (0.005) 0.1
Nickel (dissolved) Phosphorus (dissolved) Potassium (dissolved)	ug/L ug/L	8 1 1	<u> </u>	ND (6:3) ND (50) 1300	ND (6.3) ND (50) 1350	ND (50) 1400	ND (50) 1220	1.83 ND (50) 2170	ND (50) 2070	ND (50) 2180	1.92 ND (50) 2130
Rubidium (dissolved) Selenium (dissolved)	ug/L ug/L	- 01	- 82	0.48	0.55 ND (0.05)	0.54 ND (0.05)	0.06	1.06 ND (0.05)	1.03 ND (0.05)	1.14 ND (0.05)	1.3 ND (0.05)
Silicon (dissolved) Silver (dissolved)	ug/L ug/L	- 8	1 <u>a</u>	11600 ND (0.01)	12300 ND (0.01)	13100 ND (0.01)	11800 ND (0.01)	12700 ND (0.01)	13100 ND (0.01)	14000 ND (0.01)	13500 ND (0.01)
Scolum (dissolved) Strontium (dissolved)	ug/L ug/L	2500		6460 189	6970 232 2400	7100	6190 152	23700 321	307	334	337
Sulption (dissolved) Tellution (dissolved) The first of dissolved)	1 gg 5		1 10	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Intellium (dissolved) The foliam (dissolved)	1 gg 1	1 1 20	9 1	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.01)	ND (0.1)	ND (0.0)	ND (0.1)	ND (0.01)
IIII (dissolved) Titanium (dissolved)	1 gg 1	0007	1000	ND (0.3)	ND (0.3)	ND (0.1)	S O O	ND (0.3)	N N N N N N N N N N N N N N N N N N N	ND (0.3)	ND (0.3)
rungsten (utsauved) Uranium (dissolved) Vananium (nissolved)	ug/L	, g 8	1 58 1	0.244	0.288	0.314	0.188	0.913	0.893	0.758	0.736
Zinc (dissolved)	1 PG	3000	1 2	600	27:1	2.	2:	17.1		00.1	18:

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample Location: Sample ID: Sample Date:		BC CSR Schedule 3.2		WG-11209296-210222-MJ-07 V	WG-11209296-230522-NT-09 WG	EBA11-1 WG-11209296-230522-NT-10 V	WG-11209296-220822-NT-04	WG-11209296-221122-NT-09	WG-11209296-210222-MJ-03	EBA11-3 WG-11209296-230522-NT-07 W	G-11209296-230822-NT-19	WG-11209296-221122-NT-20
	Units	DW a	FAW									
Field Parameters Oxidation reduction, yield Oxidation reduction potential (ORP), field mm Field feel feel feel feel dissolved solid field (TDS) Turbidity, feel	uS/cm millivolts s.u. Deg C mg/L NTU	11111	11111	1110 210 7.54 6.88 7.08 3.3	120 226 7.38 10.19 7.79	120 226 7.38 10.19 779 1.7	1080 278 7.54 12.80 694	753 192 7.60 9.02 482 2.4	87 -208 7.61 9.57 56 1.9	164 154 7.82 11.00 107 3.2	93 301 8.30 12.57 61 8.5	98 189 10.32 64 7.1
General Chemistry Adelmy, Describents Adelmy, Describents Adelmy, Carporates Adelmy, Carporates Adelmy, Carporates Adelmy, Tournates Adelmy, Mystory and Carbon Adelmy, Mystory and Carbon Corrolactivity Corrolactivity Adelmy, Adelm	John John John John John John John John	250 250 250 1.5 1.5 1.5	1500 1500 16]	280 ND (1.0) ND (1.0) ND (1.0) 1580 1580 1680 ND (1.100) ND (1.100) 831.4 833.4	208 ND (1.0) (1.0) (1.0) (202 202 203 (1.50 ND (1.00) 402 26.4 852	206 ND (10) (10) 204 1140 ND (6100) 4 68 25.7 887	207 ND (1.0) ND (1.0) 2017 243 243 1340 ND (0.100) 102 267 267	188 ND (1.0.) ND (1.0.) 188 157 157 157 158 ND (0.100) 3-46 3-88 5-88 5-88	45.9 ND (1.0) ND (1.0) 45.9 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	86.4 ND (1.0) ND (1.0) S6.4 0 11.8 11.8 11.6 ND (0.0.20) ND (0.0.20) 70.5 2.06 100	45.4 ND (1.0) ND (1.0) ND (1.0) 17.6 17.6 19.6 ND (10.00) 44.8 2.3.7 83	64.4 ND (1.0.) ND (1.0.) 64.4 2.8.3 2.8.3 119 ND (1020) 64.8 81
Mutrients Ammoria-N Mare (as N) Mare (as N) Martle (as N) Martle (as N)	mg/L mg/L mg/L	1 0 - 0	[a] 400 100 400	0.0113 14.2° 0.174 14.4°	ND (0.0050) 9.16 0.0538 9.21	ND (0.0050) 9.18 0.0537 9.23	ND (0.0050) 12.6* 0.0195	ND (0.0050) 11.6* 0.0396 11.6*	ND (0.0050) 0.0495 ND (0.0010) 0.0495	ND (0.0050) 0.143 J ND (0.0010) 0.143 J	ND (0.0050) 0.0633 ND (0.0010) 0.0633	ND (0.0050) 0.0325 ND (0.0010) 0.0325
Auminum (dissolved) Anterior (dissolved) Anterior (dissolved) Anterior (dissolved) Anterior (dissolved) Bergium (dissolved) Aumadum (dissolved)	146 146 146 146 146 146 146 146 146 146	99000 1000	1888 888 888 888 888 888 888 888 888 88	6.4 0.06.1 0.06.1 0.06.0 0	ND (1.1) ND (1.1) ND (1.1) ND (1.2)	2.7 ND (ct.) 0.2 14.3 ND (ct.) ND (ct.)	ND (1)	ND (1) ND (0.1) ND (0.1) ND (0.1) ND (0.04) ND (0.05) ND	2.9 NG (6.1)	14 N N (0.01) N (0.05)	2 ND (0.1) ND (0.1) ND (0.1) ND (0.1) ND (0.0) N	2.1 0.46 0.46 0.66 0

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample ID: Sample Date:		BC CSR Schedule 3.2	WG-1-	WG-11209296-210222-MJ-04 WG-11: 02/21/2022	WG-11209296-210222-MJ-05 WG-112	EBA11-4 WG-11209296-230522-NT-06 WG-11 05/23/2022	WG-11209296-230822-NT-17 WG-1 08/23/2022	WG-11209296-221122-NT-19 WG-11202022	WG-11209296-240522-NT-22 WG	HBT94-1 WG-11209296-230822-NT-23 WG- 08/23/2022	WG-11209296-221122-NT-22
Parameters	Units	DW F.	FAW								
Field Parameters Conductivity, field Oxidation reduction potential (ORP), field pH, field	uS/cm millivolts s.u.	111	111	106 -291 7.89	106 -291 7.89	120 145 7.98	106 291 8.3.6	114 176 8.39	541 151 7.29	1150 83 7.91	790 197 7.18
l emperature, held Total dissolved solids, field (TDS) Turbidity, field	mg/L NTU		111	8.88 69 25.0	8.88 69 25.0	1129 78 22.9	12.55 69 19.8	10.26 74 30.3	11.75 346 38.7	74.52 735 26	9.75 506 10.4
Quental Chamistry Alsening, control Alsening, control Alsening, carbon Alsening, protocole (et c.n.co.s) Alsening, typicacole (et c.n.co.s) Alsening, typicacole (et c.n.co.s) Christie (disposition) Elbriotide Flactories Salland (elsening) Salland (elsening) Alsening	John John John John John John John John	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1900 [0] [1]	47.3 ND (1.0) ND (1.0) 47.3 7.24 ND (0.020) 2.48 85	47.7 NO (1.0) NO (1.0) 47.7 7.97 124 NO (0.020) 26.5 24.6 24.6 76	48.2 ND (1.0) 1.0 48.2 4.83 119 ND (10.020) S 20.6 81	47.2 ND (1.0) ND (1.0) 47.2 4.08 0.020 48.2 1.95 86	58.4 ND (1.0) C (1.0) S8.4 3.40 3.40 61.8 4.76 90	2.18 ND (1.0) ND (1.0) 2.18 3.46 5.50 0.0024 1.64 6.77 2.84	723 ND (1.0) ND (1.0) ND (1.0) 1723 913 913 94.6 89.0 89.0 89.0	378 ND (1.0) 0 (1.0) 7 (1.0) 376 880 880 891 336 6.13 6.13
Nutrients Ammoria-N Nutrie (sn V) Nutrie (ss N) Nutrie (ss N) Nutrie (ss N)	Tybu mbyr mbyr mbyr	1 0 - 0	[a] 400 [c] 400	ND (0.0050) 0.282 ND (0.0010) 0.282	ND (0.0050) 0.280 ND (0.0010) 0.280	ND (0.0050) 0.255 ND (0.0010) 0.255	ND (0.0050) 0.209 ND (0.0010) 0.209	ND (0.0050) 0.569 ND (0.0010) 0.569	4.84 0.685 0.147 0.832	12.6° 0.231 ND (0.0100) 0.231	7.83 0.842 0.0300 0.872
Diseasoved Mentals Autiminut (stessoved) Autiminut (stessoved) Autiminut (stessoved) Autiminut (stessoved) Bankinit (stessoved) Bankinit (stessoved) Bankinit (stessoved) Bankinit (stessoved) Carelanit (stessoved) Mengames (stessoved) Mengames (stessoved) Mengames (stessoved) Mengames (stessoved) Mengames (stessoved) Salvent (stessoved) Salvent (stessoved) Salvent (stessoved) Salvent (stessoved) Thalianit (stessoved) Thalianit (stessoved) Thalianit (stessoved) Unatim (stessoved) Thalianit (stessoved) Unatim (stessoved) Thalianit (stessoved)		99000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 900000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000	91. 100.0000 100.00000 100.00000000000	7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3 166 (1) 168 (1) 168 (1) 169 (1) 160 (1)	14.3 ND (0.1) 2.18 ND (0.4)	4.2	3.1 (1.78 (1	1.4 0.024 0.024 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.036 0.038	3.7 1.13 1	3.1 0.25 0.19 0.19 0.10 0

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample Location: Sample ID: Sample Date:		BC CSR Schedule 3.2	À AV	WG-11209296-210222-MJ-02 WG	HBT94-; WG-11209296-240522-NT-23 W 05/24/2022	4-2 WG-11209296-230822-NT-22 WG 08/23/2022	WG-11209296-221122-NT-23 1	WG-11209296-210222-MJ-01 02/21/2022	MW01 WG-11209296-230522-NT-01 05/23/2022	1-16 WG-11209296-220822-NT-01 08/22/2022	WG-11209296-211122-NT-01 11/21/2022
Parameters	Units		p								
Floid Parameters Could villy, floid Oxidation reduction potential (DRP), floid pht. floid pht. floid Thrometure, floid Total dissolved soilds floid (TDS)	uS/cm millivolts s.u. Deg C mg/L	1111	1111	421 11 7.59 9.63 274	630 -37 7.37 12.07 403	582 85 8.16 14.80 373	405 -40 7.87 11.29 285	92 -24 6.99 11.31	72 166 7.19 11.43	57 336 6.76 9.98 37	91 196 7.3.7 7.5.7 59
Turbacky, solid Connect Chemistry Alkalmy, branches Alkalmy, branch	NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L			10.5 208 ND (1.0) ND (1.0) 208 3.3.2 4.80 NO (0.050) 168 284 284	1.5 266 ND (1.0) ND (1.0) 266 273 601 601 603 238 238 249 314	2.6 28.1 ND (1.0) ND (1.0) 28.1 57.0 692 ND (1.00) 270 270 187 187 387 387	3.4 19.4 ND (1.0) ND (1.0) 19.4 38.4 38.4 496 ND (0.020) 10.022) 12.7 2.7 2.6 2.7 2.6 2.7 2.7 2.7	0.9 89.9 ND (1.0) ND (1.0) ND (1.0) 38.9 7.40 ND (0.020) 46.6 2.61 7.1	16 30.3 ND (1.0) ND (1.0) ND (1.0) 80.3 11.56 80.8 ND (0.020) 31.7 2.14 64	63 32.7 ND (10) ND (10) 32.7 0.89 7.31 ND (00.20) 3.18 2.24 49	32 534 ND (1.0) ND (1.0) 534 636 113 ND (0.020) 51.3 2.50 7.8
Muthents Ammoria-N Infrare (as N) Infrare (as N) Infrare (as N) Infrare (as N)	mg/L mg/L mg/L	1 0 - 0	[a] 400 [c] 400	5.65 0.0067 ND (0.0010) 0.0067	6.82 0.0122 ND (0.0010) 0.0122	7.17° ND (0.0250) 0.0264 0.0264	5.66 0.0055 ND (0.0010) 0.0055	ND (0.0050) 0.0363 ND (0.0010) 0.0363	ND (0.0050) 0.0354 ND (0.0010) 0.0354	ND (0.0050) 0.0588 ND (0.0010) 0.0588	ND (0.0050) 0.104 ND (0.0010) 0.104
Diseasoved Media the Antonion (issoowed) Administration (issoowed) Against (issoowed) Awagnessam (issoowed) Ayagnessaw (issoowed) Ayaman (issoow		98800000000000000000000000000000000000	8.88 8.89 8.89 8.89 8.89 8.89 8.89 8.89	4 6 NO (0.1) 1134 1134 1134 1134 1134 1134 1134 11	3.8 100 (c) 1 100 (c	3.3 1.77 1.77 1.77 1.77 1.77 1.00 1	3.6 10.1 11.6 12.8 14.0 12.8 14.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	4.3 ND (0.1) ND (0.2) ND (0.3) ND (0.1) ND (0.2) ND (0.1) ND (0.1)	2 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	17 ND (0.1) ND (0.1) ND (0.2) ND (0.3) ND (0.3)	NO (0.1)

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample ID:		BC CSR	WG-112093	WG-11209296-220222-MJ-19 WG-11	WG-11209296-240522-NT-18 WG-1	WG-11209296-230822-NT-08 WG-1	WG-11209296-230822-NT-09 WG	WG-11209296-211122-NT-07 WG	WG-11209296-220222-MJ-12 WG	WG-11209296-230522-NT-02 WG-1	WG-11209296-230822-NT-14 WG-	WG-11209296-221122-NT-16
Parameters	Units	DW FA	FAW b									770777
Field Parameters Conductivity, field Oxidation reduction potential (ORP), field pH, field	uS/cm millivolts s.u.			572 107 7.84	657 61 7.02	732 137 7.05	732 137 7.05	424 102 7.53	137 384 7.35	158 153 7.73	119 221 8.76	245 166 8.43
Temperature, field Total dissolved solids, field (TDS) Turbidily, field	Deg C mg/L NTU		111	9.11 366 0.0	11.93 420 0.8	15.64 468 0.3	15.64 468 0.3	9.98 276 1.2	8.77 89 1.7	13.05 103 0.3	14.32 77 0.4	11.40 159 1.3
General Chemistry ARadinity, Isolandonale ARadinity, Cardonale Aradinity, Cardonale Aradinity, Cardonale Aradinity, Producede (se CaCO3) Aradinity, producede (se CaCO3) Aradinity, producede (se CaCO3) Aradinity, producede	mg/L mg/L mg/L			228 2.0.6 ND (1.0) 249	2554 ND (1.0) ND (1.0) ND (1.0) 254 255	346 ND (1.0) ND (1.0) ND (1.0) 346	349 ND (1.0) ND (1.0) ND (1.0) 349	282 ND (1.0) ND (1.0) ND (1.0) 282	77.6 ND (1.0) ND (1.0) ND (1.0) 7.76	72.1 ND (1.0) ND (1.0) 72.1	71.7 ND (1.0) ND (1.0) N 71.7	141 ND (1.0) ND (1.0) 141
Undrode (1880/004) Cranduckinky Flaunide Herdred (1880/004) Sudfael (1880/004) Total dissolved solids (TDS)	us/cm mg/L mg/L mg/L	25.0 2.1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0001 [d]	31.7 563 603 (0.020) 174 2.35 287	53.2 659 ND (0.100) 191 1.63 3.28	44.8 815 ND (0.100) 2.52 1.65 4.05	45.0 818 ND (0.100) 257 1.70 404	47.7 685 ND (0.020) 209 2.87 343	1.56 159 ND (0.020) 76.1 2.77 86	1.80 154 ND (0.020) 73.4 2.56 102	2.82 146 ND (0.020) 66.6 2.35 106	7.24 298 ND (0.020) 151 2.36 185
Nutrients Amenoria-N Mittrab (sa N) Nutrie (sa N) Nutrie (sa N) Nutrie (vil rab	J,6w mg/L mg/L	10 40 10 10 10 10 10 10 10 10 10 10 10 10 10	[a] ND ND [G] ND	11.3 ND (0.0050) ND (0.0010) ND (0.0051)	11.5 ND (0.02.50) ND (0.00.50) ND (0.02.55)	17.3 0.166 ND (0.0050) 0.166	16.9 0.168 ND (0.0050) 0.168	13.4° ND (0.0050) ND (0.0010) ND (0.0051)	ND (0.0050) 0.144 ND (0.0010) 0.144	ND (0.0050) 0.194 ND (0.0010) 0.194	ND (0.0050) 0.124 ND (0.0010) 0.124	ND (0.0050) 0.221 ND (0.0010) 0.221
Dissolved Matals Dissolved Matals Arithmory (dissolved) A rateric (dissolved) B statut (dissolved)	ng/L ng/L ng/L	9500 6 0 10 5 1000		1.9 ND (0.1) 0.21 2.5.3	1.3 ND (0.1) 0.2 28.2	12 ND(0.1) 0.22 41.6	1.6 ND (0.1) 0.22 41.5	ND (1) ND (0.1) 0.18 29.1	5 ND (0.1) 0.6 1.86	4.6 ND (0.1) 0.56 1.92	5 ND (0.1) 0.58 1.59	3.7 ND (0.1) 0.44 3.7
Beryllam (1850/ved) Bismuth (dissolved) Boron (dissolved) Carollium (dissolved) Caselium (dissolved)	7/8n 7/8n 7/8n 7/8n		12000 [d]	0 (0.1) 229 06.05 229 0679	ND (0.1) ND (0.05) 241 0.0821	ND (0.1) ND (0.05) 265 0.0966 ND (0.04)	ND (0.1) ND (0.05) 280 0.103	ND (0.1) ND (0.05) 221 0.0867	ND (0.05) ND (0.05) Z7 ND (0.005) ND (0.005)	ND (0.17) ND (0.05) ND (0.005) ND (0.005)	ND (0.1) ND (0.05) 16 ND (0.05) ND (0.05)	ND (0.1) ND (0.05) 36 0.0127 ND (0.01)
Galdum (dissolved) Chromium (dissolved) Chromium (dissolved) Connet (dissolved)	7/5n 1/5n 1/5n			51100 D (0.5) D 44 B 27	57700 ND (0.5) 1.04	74200 ND (0.5) 1.41	76(0.5) ND (0.5) 1.42	63600 ND (0.5) 1.09	28900 ND (0.5) ND (0.1)	28000 ND (0.5) ND (0.1)	23700 ND (0.5) ND (0.1)	53000 ND (0.5) 0.13
Coupley (ussolved) Lead (dissolved) Lithium (dissolved)	7/8/1 1/8/1 1/8/1			22 22 0(0.05) (10 (1)	33 ND (0.05) ND (1)	35 ND (0.05) ND(1)	8.35 ND (0.05) ND (1)	ND (0.05) ND (1)	ND (10) ND (0.05) ND (1)	ND (10) ND (0.05) ND (1)	ND (0.05) ND (0.05) ND (1)	ND (10) ND (0.05) ND (1)
Magnesium (dissolved) Manganese (dissolved) Mercury (dissolved)	ng/L ng/L			11200 1800° (0.005)	2000° 0.0054	2670* ND (0.005)	16400 2660 ^a ND (0.005)	12200 2060* ND (0.005)	Z180 ND (0.1) ND (0.005)	20/0 ND (0.1) ND (0.005)	1800 ND (0.1) ND (0.005)	4500 ND (0.1) ND (0.005)
Molybbehum (dissolved) Nickel (dissolved) Phosphorus (dissolved)	1 00 m 1 7 00 m 1 7 00 m			0.816 1.46 D(50)	0.74 1.09 ND (50)	0.627 1.47 ND (50)	0.637 1.48 ND (50)	0.66 1.85 ND (50)	0.152 ND (0.5) ND (50)	0.166 ND (0.5) ND (50)	0.152 ND (0.5) ND (50)	0.08 0.52 ND (50)
Potassium (dissolved) Rubkdium (dissolved) Selenium (dissolved)	ug/L ug/L			8930 0.52 (0.05)	9090 0.5 ND (0.05)	11100 0.6 ND (0.05)	11300 0.62 ND (0.05)	9560 0.5 ND (0.05)	536 ND (0.2) 0.164	517 ND (0.2) 0.452	.490 ND (0.2) 0.143	778 0.24 0.099
Silicon (dissolved) Silver (dissolved) Sodium (dissolved)	ug/L ug/L			14200 5 (0.01) 2800	13200 ND (0.01) 28800	14300 ND (0.01) 31000	14300 ND (0.01) 31000	13100 ND (0.01) 25400	4560 ND (0.01) 2310	4450 ND (0.01) 2250	4390 ND (0.01) 2240	4550 ND (0.01) 3320
Strontium (dissolved) Sulphur (dissolved) Tellurium (dissolved)	ug/L ug/L			240 850 0 (0.2)	258 1000 ND (0.2)	360 850 ND (0.2)	359 890 ND (0.2)	272 720 ND (0.2)	43.8 750 ND (0.2)	42.8 560 ND (0.2)	40.2 700 ND (0.2)	86.2 590 ND (0.2)
Thallium (dissolved) Thorium (dissolved) Tin (dissolved)	ug/L ug/L			D (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1) ND (0.1)	ND (0.01) ND (0.1)
Titanium (dissolved) Tungsten (dissolved) Iranium (dissolved)	ug/L ug/L			D (0.3) D (0.1)	ND (0.3) ND (0.1)	ND (0.3) ND (0.1) 0.439	ND (0.3) ND (0.1) 0.434	ND (0.3) ND (0.1)	ND (0.3) ND (0.1)	ND (0.3) ND (0.1)	ND (0.3) ND (0.1)	ND (0.3) ND (0.1)
Vanadium (dissolved) Zinc (dissolved)	ng/L ng/L			1.85	1.68 ND (1)	1.73 ND(1)	1.73	1.62 ND (1)	2.87 ND (3)	2.77	2.81	2.37 ND (1)

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wase Management Centre
Campbell River, British Columbia

Sample Location:	ŀ		-	ı			-			MW06-21		
Sample ID: Sample Date:		BC CSR Schedule 3.2		WG-11209296-220222-MJ-11 WG 02/22/2022	WG-11209296-240522-NT-21 WG 05/24/2022	WG-11209296-230822-NT-07 WC	WG-11209296-211122-NT-08	WG-11209296-22022-MJ-17 WG-11209296-240522-NT-16 02/22/2022		WG-11209296-230822-NT-10 V	WG-11209296-211122-NT-04 WG-11209296-211122-NT-05 11/21/2022	VG-11209296-211122-NT-05
Parameters	Units	a a	PAW b									Duplicate
Field Parameter Conductor(), field Oxidation reduction potential (ORP), field I oxidation reduction potential (ORP), field I emperature infeld Temperature assists, field (TDS) Turbolly, field	uS/cm millivolts s.u. Deg C mg/L NTU	11111	11111	125 317 8 28 8 57 8 57 81	166 116 8.36 11.45 100	120 302 7.81 12.47 78 244	79 100 9.24 8.48 512	198 233 8.59 8.50 8.30 13.2	205 163 7.87 11.18 133 16.0	163 277 7.86 12.36 106 50.5	129 160 8.45 9.39 8.4 24.1	129 160 8.45 9.39 8.4 24.1
General Chemitary Administry Control to the Administry Control to the Administry Control to the Administry Control to the Cont	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L			69.8 ND (1.0) ND (1.0) 69.8 3.56 3.56 151 ND (0020) 67.7 8.24	72.6 ND (1.0) ND (1.0) ND (1.0) 47.6 47.9 170 0.0022 1737 473 101	66.8 ND (1.0) ND (1.0) ND (1.0) 66.8 3.66 3.65 3.26 1.22 ND (0.020) 3.07 1.13	56.4 ND (1.0) ND (1.0) ND (1.0) 56.4 3.47 3.47 3.47 3.68 9.8 9.8	112 ND (1.0) ND (1.0) 112 2.41 2.41 2.24 0.004 0.004 1.007 1.235	102 ND (10) ND (10) 102 2.45 2.85 2.09 0.027 9.65 2.11 1.10	99.3 ND (1.0) ND (1.0) 99.3 2.34 2.34 2.06 0.023 2.67 2.12 141	98.0 ND (1.0) ND (1.0) ND (1.0) 98.0 2.25 2.25 2.26 0.025 130	96.5 ND (1.0) ND (1.0) (1.0) 96.5 2.34 2.22 131 2.22 131 131
Nutrients Ammonia-N Nitrale (as N) Nitrale (as N) Nitride (as N) Nitride (litrale	mg/L mg/L mg/L	1 0 - 0	[8] 400 1G 400	ND (0.0050) 0.196 ND (0.0010) 0.196	ND (0.0050) 0.201 ND (0.0010) 0.201	ND (0.0050) 0.195 ND (0.0010) 0.195	0.0072 0.208 ND (0.0010) 0.208	ND (0.0050) 0.635 ND (0.0010) 0.635	ND (0.0050) 0.648 ND (0.0010) 0.648	ND (0.0050) 0.581 ND (0.0010) 0.581	ND (0.0050) 0.555 ND (0.0010) 0.555	ND (0.0050) 0.556 ND (0.0010) 0.556
Discovered Medical for Automating Glassowed) Automating Glassowed) Areance (Glassowed) Areance (Glassowed) Benjalin (Glassowed) Benjalin (Glassowed) Benjalin (Glassowed) Glassowed) Heard (Glassowed) Benjalin (Glassowed) Glassowed) Glassowed) Glassowed) Glassowed) Glassowed) Thallanin (Glassowed) Glassowed) Thallanin (Glassowed) Th	7 69 7 7 7 7	99000 11000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10	0.000000000000000000000000000000000000	7.8 ND (6.1) ND (6.1) ND (6.2)	12.9 12.9 12.2 2.2 2.2 2.2 2.2 2.	6 8 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	18.2 18.2 2.82 2.82 2.82 2.82 3.82 3.87	7.3 NG (0.1) NG (0.1) NG (0.1) NG (0.2) NG (0.2)	2.7 M. 0.0 1 M. 0.0 2 M. 0.0 2 M. 0.0 2 M. 0.0 2 M. 0.0 3 M	12.5 NO (0.5) (0.05) (0	2 N D G 1/2 O S 1/2 O	19 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (2)

Table 4
Groundwater Analytical Results - General Chemistry, Nutrients and Metals
2022 Annual Operations and Monitoring Report
Campbell River Wass Management Centre
Campbell River, British Columbia

152 168 151 152	1122/2022 1122/2022 1122/2022 1122/2022 1122/2022 1122/2022 1125 125 125 125 125 125 125 125 125	02712022 65722022 6526 654 950 170 170 640 1406 7759 7740 7740 7740 7740 7740 7740 7740 7740	479 479 589 589 511 5136 6137 5138 6137 5138 6137 6138 6137 6139 6139 6139 6139 6139 6139 6139 6139	
Color	151 155 225 151 8.35 8.94 13.51 8.43 98.4 8.75 87.5 87 NO. (10) NO. (10) NO. (10)			
Marie Mari	151 155 2.55 151 8.75 8.94 1.351 8.94 98 94 98 94 98 94 98 97 90 4 97 94 97 94 97 94 98 98 98 94 98 94 98 94 98 94 98 94 98 94 98 94 98 94 98 98 94 98 94			
March Marc	2.06 (51) 8.13 8.94 11.351 8.9			
Color	13.51 8.94 13.51 8.43 19.61 8.75 19.64 3.8 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5			
March Marc	964 3.8 964 3.8 875 (10) NO(10) NO(10) NO(10)			
The column The	87.5 105 NO(10) NO(10) NO(10) NO(10) NO(10) NO(10)			
Colores Colo	87.5 105 NO (1.0) NO (1.0) NO (1.0) NO (1.0)			
The color of the	ND (1.0) ND			
March Marc	ND(4.0)			
outcomes might = 152 70.7 57.5 57.5 97.5 <t< td=""><td>(0:1)</td><td></td><td></td><td></td></t<>	(0:1)			
Option (Color) Light (Color)	87.5 105			
Model Till Fill NAD (0.020) NAD (0.020) </td <td>184 213</td> <td></td> <td></td> <td></td>	184 213			
Average and section (1) mg/L 50 10 27.5 2.8 2.5 2.84 44 Average and section (1) Major To (1) Major Major 124 144 44 Average and section (1) Major Major <t< td=""><td>ND (0.020) ND (0.020)</td><td></td><td></td><td></td></t<>	ND (0.020) ND (0.020)			
No.	2.31 2.64			
N M may be a control of the	124 148			
Mary 1				
March 1 1 1 1 1 1 1 1 1	ND (0.0050) 0.140 0.140	ND (0:0050) ND (0:0050)		
March 10 400 0.160 0.181 0.140 0.140 0.148	ND (0.0010) ND (0.0010)			
up/L 6 442 54 103 34 up/L 6 90 ND (6.1)	0.140 0.188			
1971 1980 1974				
The color of the	10.3 3.4 ND (0.1)			
10	0.33 0.28			
10 10 10 10 10 10 10 10	ND (0.1) ND (0.1)			
10	ND (0.05) ND (0.05)			
1	13 21 ND (0.005) ND (0.005)			_
1	ND (0.01) ND (0.01)			
Part	32200 34800 ND (0.5) ND (0.5)			
The color of the	ND (0.1) ND (0.1)	ND (0.1) ND (0.1)	ND (0.1) ND (0.1) ND (0.2)	
Mail	12 ND (10)			
1	ND (0.05) ND (0.05) ND (1)			
Mail 1500 2	2510 2720			
ed) up/L 250 10000 0 1656 0 1734 0 1344 0 1087 st) up/L -	0.68 ND (0.1)			
10 10 10 10 10 10 10 10	0.134 0.097			
10 10 10 10 10 10 10 10	ND (0.5) ND (50) ND (50)			
10 10 10 10 10 10 10 10	490 473			
Part	ND (0.2) ND (0.2) 0.173 0.123			
We will be a second of the control	4700 4210			
up/L 2500 47.8 47.7 56.2 56.2 up/L 2500 - - ND (0.2)	ND (0.01) ND (0.01)			
1	51.7 56.2			
The control of the	830 530 ND (0.2) ND (0.2)			
ught 250 — ND(67)	ND (0.01) ND (0.01)			
Page	ND (0.1) ND (0.1) ND (0.1)			
HQPL 3 = ND(0.1) ND(0.	0.5 ND (0.3)			
286 238 200	ND (0.1) ND (0.1) 0.058 0.072			
Ug/L 20 - 2.39 2.39 (1.9/	2.26 1.97			
3000 [a] ND (1) ND (1) ND (1) ND (1) ND (1) ND (12) ND (02) ND (02) ND (02)	ND(1) ND(1) ND(1) ND(0.2)			

Table 5
Groundwater Analytical Results - Volatile Organic Compounds and Petroleum Products
2022 Annual Operations and Monitoring Report
Campbell River Waste Management Centre
Campbell River, British Columbia

Samuel a configuration				90 000 4	90	ANDO OF	Z POVOZ	F 72	P CD V	
Sample Location:		000		AGSA	90-6	AMUZ-U1	EDAU	U4-1	₹	- -
Sample ID: Sample Date:		ŭ	3.2		WG-11209296-230622-N1-10 08/23/2022	WG-11209296-230622-N 1-06 08/23/2022		WG-11209296-230622-N1-20	02/21/2022 02/21/2022	WG-11209296-220622-N1-04 08/22/2022
Parameters	Units	a a	FAW b							
Petroleum Products VHw6-10 VPHw	ng/L ng/L	15000	15000 1500	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)
Volatile Organic Compounds										
1,1,1,2-Tetrachloroethane	ng/L	9	1	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,1,1-Trichloroethane	ng/L	8000	,	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
1,1,2,2-Tetrachloroethane	ng/L	9.0		ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)
1,1,2-Trichloroethane	ng/L	en ;	1	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,1-Dichloroethane	ng/L	30		(0.50) (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)
1,1-Uichioroemene	ug/L	4 000	1 1	(06.0) ON	ND (0.90)	ND (0:50)	ND (0.50)	(0e:0) ON	ND (0.90)	ND (0:30)
1,2-Dickloroethene	ug/L	200	100	(0:0) CN	(0:30) ON	(0:00) ON	ND (0:30)	(0c.0) QN	(0°.0) CN	(0.50) ND (0.50)
1.2-Dichloropropane	ng/L	4.5	2 1	(0:20) ND (0:20)	ND (0:20)	ND (0:30)	ND (0:20)	(05:0) ON	(0.50) ND (0.50)	ND (0:50)
1,3-Dichlorobenzene	ng/L		1500	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,4-Dichlorobenzene	ng/L	2	260	ND (0.50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0:50)	ND (0.50)	ND (0.50)
Benzene	ng/L	2	400	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Bromodichloromethane	ng/L	100		ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Bromoform	ng/L	100	1 3	ND (0.50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0:50)	ND (0.50)	ND (0.50)
Carbon tetrachloride	ng/L	7	130	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Chlorobenzene	ng/L	80	13	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Chloroethane	ng/L	1 9	1 8	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Chloroform (Trichloromethane)	ng/L	100	82	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Chloromethane (Methyl chloride)	ug/L	1 0		ND (0:0)	ND (9:0)	ND (5.0)	ND (5:0)	(0:0) (0:0) (0:0)	ND (5:0)	(0:0) ND (0:0)
cis-1,z-Dichloropropene	ug/L	0		(0:00) CN	(0.30) ND (0.50)	(0:00) CIN	(0:0) ON (0:0) ON	(00:0) ON	(0.50) CN	(0.30) (0.30) (0.30)
cis-1,3-Dichloropropene/trans-1,3-Dichloropropene	ug/L			ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)	ND (0.75)
Dibromochloromethane	ng/L	100	,	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Ethylbenzene	ng/L	140	2000	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
m&p-Xylenes	ng/L	1		ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)
Methyl tert butyl ether (MTBE)	ng/L	92	34000	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Methylene chloride	ng/L	20	980	ND(1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	(1.0)
o-Xylene	ng/L	1	1	ND (0:30)	ND (0.30)	ND (0:30)	ND (0.30)	ND (0:30)	ND (0.30)	ND (0.30)
Styrene	ng/L	800	720	(0.50) (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)
Tetrachloroethene	ng/L	30	1100	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
loluene	ng/L	09	۵	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)
trans-1,z-Dichioroetnene	ug/L	90			ND (0.90)	ND (0:50)	(0:00) (0:00) (0:00)	(0.0) ON	ND (0.50)	ND (0.30)
trans-1,3-Dichioropropene	ug/L	1 4	1 8	ND (0:50)	ND (0.90)	ND (0:50)	ND (0.50)	(0.50) ON	ND (0.90)	ND (0:30)
Troblorofiloromethone (CEC-11)	ug/L	0001	200			(0:30) (0:50) (0:50)	(0.50) ON	(00:0) ON	(0.50) CN	(0.30) (0.30) (0.30)
Vind chloride	1/6	000			ND (0.40)	(S.S.) ON	(0:00) (0:00) (0:00)	(0.00) ON	ND (0.30)	(0.50) (0.40)
Xvlenes (total)	ug/L	36	300	(GE:0) QN (O:00)	ND (0:50)	ND (0:50)	ND (0:20)	(0:20) ND (0:20)	(G+G) (OS-O) (OS-O)	ND (0:50)
(100.00) 000.00.00	1			(22.2)	(2012) 211	(0000)	(2012)	(2012)	(2000)	(22.22)

Table 5
Groundwater Analytical Results - Volatile Organic Compounds and Petroleum Products
2022 Annual Operations and Monitoring Report
Campbell River Waste Management Centre
Campbell River, British Columbia

Samulo Location:				EBA11-3	14.3		EBA11-4		C-NOTAL	77-2
Sample ID:		BC CSR	3,2	WG-11209296-210222-MJ-03	WG-11209296-230822-NT-19	WG-11209296-210222-MJ-04	WG-11209296-210222-MJ-05	WG-11209296-230822-NT-17	WG-11209296-210222-MJ-02	WG-11209296-230822-NT-22
		DW	ш				Duplicate			
Parameters	Units	в	q							
Petroleum Products VHw6-10 VPHw	ng/L	15000	15000	N N 0 (100)	ND (100) ND (100)	ND (100)	ND (100)	(100) QN QN	ND (100)	ND (100)
	1			(22)	(22.)	(22.)	(22.)	(22)	(22)	(22.)
Volatile Organic Compounds		,								
1,1,1,2-Tetrachloroethane	ng/L	9	1	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
1,1,1-Trichloroethane	ng/L	8000		ND (0.50)						
1,1,2,2-Tetrachloroethane	ng/L	9.0	ı	ND (0.20)						
1,1,2-Irichloroemane	ng/L	n 6		ND (0.30)	ND (0.90)	(0.0) UN	ND (0:50)	(0.50) ON	ND (0:30)	ND (0:30)
1.1-Dichloroethene	1 (g)	14		ND (0:30)	ND (0:50)	(0:0) (N ND (0:20)	(0:0) ON	(0:00) CN	(0.30) ND (0.30)	(0:30) ND (0:30)
1 2-Dichlorobenzene	3 /0	200	7	(S) (N) (N)	(0.50) ON	(05:0) ON	(05.0) ON	(00:0) CN	(0.50) ND (0.50)	(SS) ON
1.2-Dichloroethane	10,1	, rc	1000	ND (0:50)	ND (0:20)	(0:00) ND (0:20)	(0:20) ND (0:20)	ND (0:50)	ND (0:20)	ND (0:50)
1.2-Dichloropropane	na/L	4.5		ND (0:50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0:50)	ND (0:50)
1,3-Dichlorobenzene	ng/L	:	1500	ND (0.50)						
1,4-Dichlorobenzene	ng/L	2	260	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Benzene	J/6n	2	400	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0:50)
Bromodichloromethane	ng/L	100	,	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Bromoform	ng/L	100		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Carbon tetrachloride	ng/L	2	130	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Chlorobenzene	J/6n	80	13	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Chloroethane	ng/L		1.	ND (0.50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0:50)	ND (0.50)	ND (0.50)
Chloroform (Trichloromethane)	J/6n	100	8	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Chloromethane (Methyl chloride)	ng/L		,	ND (5.0)	ND (5:0)	ND (5.0)				
cis-1,2-Dichloroethene	ng/L	80		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
cis-1,3-Dichloropropene	ug/L			ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Disconochloromethene	0,0	1 00		ND (0.13)	(0.0)	(05.0) ON	(050) CN	(01:0) CN	(0:0) UN	(0.50) CN
Ethylbenzene	ng/L	140	2000	ND (0.50)	ND (0:20)	(0:00) ND (0:20)	ND (0:20)	ND (0:50)	ND (0:30)	ND (0:50)
m&p-Xylenes	ng/L		,	ND (0.40)						
Methyl tert butyl ether (MTBE)	ng/L	95	34000	ND (0.50)						
Methylene chloride	J/6n	20	086	ND (1.0)						
o-Xylene	J/6n		,	ND (0.30)	ND (0.30)	ND (0.30)	ND (0.30)	ND (0:30)	ND (0.30)	ND (0.30)
Styrene	ng/L	800	720	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Tetrachloroethene	ng/L	30	1100	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Toluene	ng/L	09	ω	ND (0.40)						
trans-1,2-Dichloroethene	ng/L	80		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
trans-1,3-Dichloropropene	J/6n				ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Trichloroethene	ng/L	c)	200		ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Trichlorofluoromethane (CFC-11)	J/6n	1000		\cap	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)
Vinyl chloride	J/6n	2		ND (0.40)						
Xylenes (total)	ng/L	90	300	ND (0.50)						

Table 5
Groundwater Analytical Results - Volatile Organic Compounds and Petroleum Products
2022 Annual Operations and Monitoring Report
Campbell River Waste Management Centre
Campbell River, British Columbia

Sample ocation:				AL-10WM	9		MW02.18	
Sample ID: Sample Date:			BC CSR Schedule 3.2	WG-11209296-210222-MJ-01 V	WG-11209296-220822-NT-01 08/22/2022	WG-11209296-220222-MJ-19 02/22/2022	WG-11209296-230822-NT-08 08/23/2022	WG-11209296-230822-NT-09 08/23/2022
Parameters	Units	a W	PAW b					Duplicate
Petroleum Products VHw6-10 VPHw	ug/L ug/L	15000	15000 1500	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)
Volatile Organic Compounds 1,1,1,2.Tetrachloroethane 1.1.Trichloroethane	ng/L	9 8		ND (0.50) ND (0.50)	ND (0.50)	ND (0.50) ND (0.50)	(0:50) ON	ND (0.50)
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	1/6n	9:0	: :	ND (0.20)	ND (0.20)	ND (0.20) ND (0.50)	ND (0.20) ND (0.50)	ND (0.20)
1,1-Dichloroethane 1,1-Dichloroethana	J/6n	30		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,2-Dichlorobenzene	ng/L	200	7	ND (0.50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0.50)
1,2-Dichloropropane	ng/L	4.5	0001	ND (0.50) ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)
1,3-Dichlorobenzene	ng/L	1 1	1500	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,4-Dichioropenzene Benzene	ng/L	ດທ	790 400	ND (0:50)	ND (0.50)	ND (0.50) ND (0.50)	ND (0:50)	ND (0.50)
Bromodichloromethane	ng/L	100	1	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Bromotorm Carbon tetrachloride	ng/L ng/L	2 00	130	ND (0.50) ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50) ND (0:50)	ND (0.50)
Chlorobenzene	ng/L	80	13	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Chloroform (Trichloromethane)	ng/L	۱ پ	18	ND (0.50)	ND (0.50)	ND (0.50)	(0:20) (0:20) (0:20)	ND (0.50)
Chloromethane (Methyl chloride)	J/Sn	2 1	3 1	ND (5:0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5:0)
cis-1,2-Dichloroethene	ng/L	80		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
cis-1,3-Dichloropropene cis-1,3-Dichloropropene/trans-1,3-Dichloropropene	ng/L			ND (0:50) ND (0:75)	ND (0.75)	ND (0.50) ND (0.75)	ND (0.55)	ND (0.30)
Dibromochloromethane	ng/L	100		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Ethylbenzene	ng/L	140	2000	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl tert butyl ether (MTBE)	ng/L	1 %	34000	ND (0:40) ND (0:50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0:40)
Methylene chloride	ng/L	20	086	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
o-Xylene	ng/L	1		ND (0.30)	ND (0.30)	ND (0.30)	ND (0:30)	ND (0.30)
Styrene	ng/L	800	720	ND (0.50)	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)
Toluene	ng/L	8 &	2 0	ND (0:40)	ND (0.40)	ND (0:40)	ND (0.40)	ND (0.40)
trans-1,2-Dichloroethene	ng/L	80	1	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)	ND (0.50)
trans-1,3-Dichloropropene	ng/L		1	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Trichloroethene Trichloroflioromethane (CEC-11)	ng/L	1000	200	ND (0.50) ND (0.50)	ND (0.50)	ND (0:50)	ND (0:50)	ND (0.50)
Vinyl chloride	J/Sn	2	1	ND (0.40)	ND (0.40)	ND (0.40)	ND (0:40)	ND (0:40)
Xylenes (total)	ng/L	90	300	ND (0.50)	ND (0.50)	ND (0:50)	ND (0.50)	ND (0.50)

Table 6a
Surface Water Analytical Results
2022 Annual Operations and Monitoring Report
Campbell River Waste Management Centre
Campbell River, British Columbia

Cample ocațion	ľ				WS	2			SW03.47	
Sample ID: Sample Date:			BC WOG	WS-11209296-220222-MJ-01 02/22/2022	WS-11209296-220222-MJ-02 02/22/2022	WS-11209296-230522-NT-01	WS-11209296-221122-NT-01	WS-11209296-230522-NT-02 05/23/2022	822-NT-01	WS-11209296-221122-NT-02
	1	DW	FAW							
rarameters	S E	9								
Field Parameters	mod	1	4	9 48	0.48	9		2 00	6 93	880
ORP, Field	millivolts		? 1	476	476	236	137	233	266	146
pH, Field	s.u.	1	6.5-9.0	5,51 ^b	5.51 ^b	6.10 ^b	8.26	6.52	8.37	7.67
Specific Conductance, Field Temperature Field	uS/cm Ded C	 15 AO	- 18 (12 sovincifall) (c) (STM)	3.70	3.70	56	5.85	35	32 26 06 ^{ab}	18
Total dissolved soilds, field (TDS)	mg/L	2 1	(min) (a) (min di min d	19	19	36	35	23	21	11
Turbidity, Field	DEN.	(0)	(0)	0.0	0.0	0.0	10.1	1.1	1.4	0.3
General Chemistry										
Alkalinity, bicarbonate	mg/L	ı		7.7	7.3	9.2	22.5	7.4	10.1	7.0
Alkalinity, carbonate Alkalinity, hydroxide	mg/L			ND (1.0)	ND (1.0)	(UD (1.0)	ND (1.0)	ND(1.0)	ND (1.0)	ND (1.0)
Alkalinity, hydroxide (as CaCO3)	mg/L	1		ND (1.0)	ND (1.0)	ND (1.0)		ND(1.0)	ND (1.0)	
Alkalinity, total (as CaCO3)	mg/L		w [e]	7.7	7.3	9.2	22.5 ^b	7.4	10.1 ^b	7.0
Chloride (dissolved)	mg/L	**ref only 250 AC		3.80	3.80	3.26	4.89	3.17	3.15	3.55
Dissolved organic carbon (DOC) (dissolved)	ma/F			32.0	5.59	6.49	5.82	5.72	6.49	5.67
Fluoride	mg/L	1.5	[b] (STM)	ND (0.020)	ND (0.020)	ND (0.020)	ND (0.020)	ND (0.020)	ND (0.020)	ND (0.020)
Hardness	mg/L	ı		9.28	09'6	9.80	24.7	8.52	9.92	8.71
Hardness, calcul ation	mg/L	- 09	1 2	9.72	966	9.80	32.6	8.96	- 0	- 080
Soliphiate (Usedived) Total dissolved solids (TDS)	mg/L	1	Ξ '	32	32	33	89	32	32	37
Ammonia-N	ma/L	1	P	0.0136	0.0147	0.0378	0.0127	0,0092	ND (0.0050)	0.0095
Nitrate (as N)	mg/L	10	3.0	0.0355	0.0313	0.0193	0.0125	0.0073	ND (0.0050)	0.0502
Nitrite (as N)	mg/L	-	[0]	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)
Nitrile/ Nitrale	mg/L	1		0.0355	0.0313	0.0193	0.0125	0.0073	ND (0.0051)	0.0502
Dissolved Metals										
Aluminum (dissolved)	ug/L	ı	[a]	59.2	09	63.4b	55	43.6	22.3	41.4
Antimony (dissolved) Arsenic (dissolved)	ngyr			0.1	0.11 0.11	0.15	ND (0.1) 0.27	ND(0.1)	0.16	0.13
Barium (dissolved)	ngv	1		1.56	1.62	1.75	2.8	1.45	1.31	1.51
Beryllium (dissolved)	ng/L	ı	1	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Bismuth (dissolved)	ng/L			ND (0:05)	ND (0.05)	ND (0.09)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Cadmium (dissolved)	ng/L	1	Ð	ND (0.005)	(0.005) ND (0.005)	(0.005) ND (0.005)	0.0053	ND (0.005)	ND (0.005)	(0.005) ND (0.005)
Caesium (dissolved)	ng/L			ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Calcium (dissolved)	ug/L	ı	1	2190	2280 MD (0.6)	2340 ND (0.6)	5720 ND 0 61	2020	2400	2040
Controllium (dissolved) Cobalt (dissolved)	ug/L			ND (0.1)	ND (0.1)	ND (0.1)	0.19	ND (0.1)	ND (0.1)	ND (0.1)
Copper (dissolved)	ng/L	ı		0.27	0.27	0.31	0.36	0.26	0.27	0.21
Iron (dissolved)	ug/L		350 (STM)	100 ND (0.05)	102 NP 00 053	147	165 ND (0.05)	80 ND (0 05)	82 ND (0.05)	122 ND (0 05)
Lithium (dissolved)	ngy	1		ND (1)	ND (1)	ND(1)	ND (1)	ND (1)	ND (1)	ND (1)
Magnesium (dissolved)	ng/L	1		925	949	096	2520	843	922	878
Manganese (dissolved) Marrinx (dissolved)	ngy	1 1		13.8 ND (0.005)	13.8 ND (0.005)	27.1 ND (0.005)	108 J	8.57 ND (0.005)	2.54 ND (0.005)	27 ND (0 005)
Molybdenum (dissolved)	ng/L	1	1	ND (0.05)	ND (0.05)	(0.05) ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Nickel (dissolved)	ng/L	ı	1	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Phosphorus (dissolved) Potassium (dissolved)	ng/L			ND (50)	ND (50)	ND (50)	ND (50) 786.1	ND (50)	ND (50)	ND (50) 148
Rubidium (dissolved)	ng/L	1	1	0.22	ND (0.2)	ND (0.2)	0.8 J	ND (0.2)	ND (0.2)	0.24
Selenium (dissolved)	ng/L		1	ND (0.05)	ND (0.05)	ND (0.05)	0.106	ND (0.05)	ND (0.05)	ND (0.05)
Silicon (dissolved)	ng/L			3040 ND (0.01)	3040 ND (0.01)	2840 ND (0.01)	6250 ND (0.01)	2560 ND (0.01)	2150 ND (0.01)	2490 ND (0.01)
Sodium (dissolved)	ngy	1		2750	2810	2620	3620	2450	2550	2580
Strontium (dissolved)	ng/L	ı		9.86	9.84	10.6	20.3	8.92	=	9.37
Sulfur (dissolved)	ug/L			ND (500)	ND (500)	ND (500)	1050 ND (0.2)	ND (500)	ND (500)	ND (500)
Thallium (dissolved)	ngyr			ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Thorium (dissolved)	ngv	1		ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Tin (dissolved)	ngv	1		ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Tungsten (dissolved)	ug/L			0.80 ND (0.1)	ND (0.1)	ND (0.1)	1.92 ND (0.1)	0.33 ND (0.1)	ND (0.1)	ND (0.1)
Uranium (dissolved)	ng/L	1		ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Vanadium (dissolved)	ng/L			ND (0.5)	ND (0.5)	0.55 ND (1)	2.01	ND (0.5)	ND (0.5)	ND (0.5)
Zironium (dissolved)	ug/L	1	-	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)

Table 6a
Surface Water Analytical Results
2022 Annual Operations and Monitoring Report
Campbell River Waste Management Centre
Campbell River, British Columbia

Sample Location:					SW-1				SW03-17	
Sample ID:				WS-11209296-220222-MJ-01	WS-11209296-220222-MJ-02	WS-11209296-230522-NT-01	WS-11209296-221122-NT-01	WS-11209296-230522-NT-02	WS-11209296-230822-NT-01	WS-11209296-221122-NT-02
Sample Date:		BC WQG		02/22/2022	02/22/2022	05/23/2022	11/22/2022	05/23/2022	08/23/2022	11/22/2022
		DW	FAW							
Parameters	Units	в	д							
Total Metals										
Aluminum	ng/L	9500	1	70.4	85.1	9.69	83.9	46.5	36.5	43.1
	ng/L	9	,	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND(0.1)	ND (0.1)	ND (0.1)
	ngvL	10	49	0.12	0.15	0.15	0.28	ND(0.1)	0.2	0.12
	ngvL	1	1000 w	1.72	1.96	1.7	2.56	1.42	1.52	1.54
	ng/L		0.13 w	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.02)	ND (0.1)	ND (0.02)	ND (0.02)
	ng/L		1	ND (0.05)						
Boron	ng/L	2000	1200	ND (10)						
	ng/L	2	,	ND (0.005)	0.0051	0.0057	0.0057	ND (0.005)	(0.005) ND	(0.005) ND
	ng/L		1	ND (0.01)						
	ng/L	1		2290	2380	2380	5780	2190	2370	2070
	ng/L	1		ND (0.5)						
	ng/L	1	4	ND (0.1)	ND (0.1)	0.11	0.13	ND (0.1)	ND (0.1)	ND (0.1)
Copper	ng/L	1000 AO	Q.	ND (0.5)	0.62	0.62	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Iron	ng/L	300 AO	1000 (STM)	126	143	177	163	86	110	147
	ng/L	49	[Q]	0.059 J	0.198 J	0.114	ND (0.05)	ND (0.05)	0.051	ND (0.05)
	ng/L	1	ı	ND (1)	ND (1)	ND(1)	ND (1)	ND (1)	ND (1)	ND (1)
	ng/L	1	1	972	984	937	2410	848	986	894
	ng/L	20 AO	[q]	15.6	16.5	32.2	55 J ^a	7	3.88	26.7ª
	ng/L	-	Ξ	ND (0.005)						
	ng/L	88	7600	ND (0.05)	ND (0.05)	ND (0.05)	0.084	ND (0.05)	ND (0.05)	ND (0.05)
Nickel	ng/L	80	w [d]	ND (0.5)						
	ng/L	10 AO for lakes	2	ND (60)	ND (50)	Qp (20) QN	ND (60)	ND (60) ^{ab}	ND (50) ^{ab}	ND (50) ⁴⁶
	ng/L	1		122	136	148	621 J	155	154	128
	ng/L	1		0.26	ND (0.2)	0.21	0.55 J	0.23	0.22	0.2
	ng/L	10	2	ND (0.05)	0.061	ND (0.05)	0.103	ND (0.05)	ND (0.05)	ND (0.05)
	ng/L	,	1	3280	3280	2860	5620	2590	2150	2320
	ng/L		[9]	ND (0.01)						
	ng/L		,	2960	2900	2560	3490	2390	2680	2620
	ng/L	7000	,	10.1	10.6	10.2	21.1	9.19	10.9	9.73
	ng/L		1	ND (500)	ND (500)	ND (500)	850	ND (500)	ND (500)	ND (500)
	ng/L		,	ND (0.2)						
	ng/L		0.8 w SS	ND (0.01)						
	ng/L		,	ND (0.1)						
	ng/L			ND (0.1)						
	ng/L	1		1.7.1	2.69 J	1.71	7.22	0.75	1.26	0.57
	ng/L	1	1	ND (0.1)						
	ngvL	20	8.5 w	ND (0.01)	0.012	ND (0.01)				
	ngvL	1	1	0.54	9.0	0.7	2.4	ND (0.5)	ND (0.5)	ND (0.5)
	ng/L	3000 MAC	[q]	ND (3)						
Zirconium	ng/L		,	ND (0.2)						

Table 6b Surface Water Analytical Results 2022 Annual Operations and Monitoring Report Campbell River Waste Management Centre Campbell River, British Columbia

Sample Location:	1			CAM_SWM Pond
Sample ID:		ВС	CSR	WS-11209296-221122-NT-03
Sample Date:		Sche	dule 3.2	11/22/2022
		DW	FAW	
Parameters	Units	а	b	
Field Parameters				
ORP, Field	millivolts			185
pH, Field	s.u.			8.05
Specific Conductance, Field	uS/cm			918
Temperature, Field	Deg C			7.58
Total dissolved solids, field (TDS)	mg/L			587
Turbidity, Field	NTU			23.4
General Chemistry				
Alkalinity, bicarbonate	mg/L			43.7
Alkalinity, carbonate	mg/L			ND (1.0)
Alkalinity, hydroxide	mg/L			ND (1.0)
Alkalinity, total (as CaCO3)	mg/L			43.7
Chloride (dissolved)	mg/L	250	1500	181
Conductivity	uS/cm			1160
Dissolved organic carbon (DOC) (dissolved) Fluoride	mg/L mg/L	1.5	[b]	8.23 ND (0.100)
Hardness	mg/L	1.5	[b]	203
Sulphate (Dissolved)	mg/L	500	[b]	47.2
Total dissolved solids (TDS)	mg/L		 [p]	746
` ′				
Nutrients				
Ammonia-N	mg/L		[a]	0.0749
Nitrate (as N)	mg/L	10	400	48.7 ^a
Nitrite (as N)	mg/L	1	[c]	0.325
Nitrite/Nitrate	mg/L	10	400	49.0 ^a
Dissolved Metals				
Aluminum (dissolved)	ug/L	9500		46.7
Antimony (dissolved)	ug/L	6	90	0.35
Arsenic (dissolved)	ug/L	10	50	0.2
Barium (dissolved)	ug/L	1000	10000	23.9
Beryllium (dissolved)	ug/L	8	1.5	ND (0.1)
Bismuth (dissolved)	ug/L			ND (0.05)
Boron (dissolved)	ug/L	5000	12000	30
Cadmium (dissolved)	ug/L	5	[b]	0.047
Caesium (dissolved)	ug/L			ND (0.01)
Calcium (dissolved) Chromium (dissolved)	ug/L ug/L	 50	 10	60700 ND (0.5)
Cobalt (dissolved)	ug/L	20 (i)	40	0.13
Copper (dissolved)	ug/L	1500	[b]	6.42
Iron (dissolved)	ug/L	6500		43
Lead (dissolved)	ug/L	10	[b]	0.111
Lithium (dissolved)	ug/L	8		ND (1)
Magnesium (dissolved)	ug/L			12600
Manganese (dissolved)	ug/L	1500		10.1
Mercury (dissolved)	ug/L	1	0.25	ND (0.005)
Molybdenum (dissolved)	ug/L	250	10000	0.785
Nickel (dissolved) Phosphorus (dissolved)	ug/L	80	[b] 	0.67 ND (50)
Potassium (dissolved)	ug/L ug/L			ND (50) 3440
Rubidium (dissolved)	ug/L ug/L			2.23
Selenium (dissolved)	ug/L	10	20	0.101
Silicon (dissolved)	ug/L			5580
Silver (dissolved)	ug/L	20	[b]	ND (0.01)
Sodium (dissolved)	ug/L	200000		127000
Strontium (dissolved)	ug/L	2500		250
Sulfur (dissolved)	ug/L			16400
Tellurium (dissolved)	ug/L			ND (0.2)
Thallium (dissolved) Thorium (dissolved)	ug/L		3 	ND (0.01) ND (0.1)
Tin (dissolved)	ug/L ug/L	2500		ND (0.1) ND (0.1)
Titanium (dissolved)	ug/L ug/L		1000	3.13
Tungsten (dissolved)	ug/L	3		ND (0.1)
Uranium (dissolved)	ug/L	20	85	0.016
Vanadium (dissolved)	ug/L	20		0.72
Zinc (dissolved)	ug/L	3000	[b]	11.1
Zirconium (dissolved)	ug/L			ND (0.2)

Table 6b Surface Water Analytical Results 2022 Annual Operations and Monitoring Report Campbell River Waste Management Centre Campbell River, British Columbia

Sample Location:				CAM_SWM Pond
Sample ID:		ВС	CSR	WS-11209296-221122-NT-03 11/22/2022
Sample Date:		Sched	dule 3.2	
		DW	FAW	
	Units	a	b	
Total Metals				
Aluminum	ug/L	9500		537
Antimony	ug/L	6	90	0.37
Arsenic	ug/L	10	50	0.33
Barium	ug/L	1000	10000	25.7
Beryllium	ug/L	8	1.5	ND (0.02)
Bismuth	ug/L			ND (0.05)
Boron	ug/L	5000	12000	31
Cadmium	ug/L	5	[b]	0.0434
Caesium	ug/L			0.019
Calcium	ug/L			63500
Chromium	ug/L	50	10	1.06
Cobalt	ug/L	20 (i)	40	0.38
Copper	ug/L	1500	[b]	9.3
Iron	ug/L	6500		560
Lead	ug/L	10	[b]	0.915
Lithium	ug/L	8		ND (1)
Magnesium	ug/L			13300
Manganese	ug/L	1500		20.1
Mercury	ug/L	1	0.25	0.0098
Molybdenum	ug/L	250	10000	0.777
Nickel	ug/L	80	[b]	1.07
Phosphorus	ug/L			75
Potassium	ug/L			3360
Rubidium	ug/L			2.44
Selenium	ug/L	10	20	0.093
Silicon	ug/L			5870
Silver	ug/L	20	[b]	0.022
Sodium	ug/L	200000	 t-1	132000
Strontium	ug/L	2500		256
Sulphur	ug/L			16500
Tellurium	ug/L			ND (0.2)
Thallium	ug/L		3	ND (0.01)
Thorium	ug/L			ND (0.1)
Tin	ug/L	2500		ND (0.1)
Titanium	ug/L ug/L	2500	1000	39.3
Tungsten	ug/L ug/L	3		ND (0.1)
Uranium	ug/L ug/L	20	 85	0.025
Uranium Vanadium		20	85	2.34
vanadium Zinc	ug/L	3000		18.2
	ug/L		[b]	
Zirconium	ug/L			0.36

Table 7 Page 1 of 1

Analytical Results Tables Notes 2022 Annual Operations and Monitoring Report Campbell River Waste Management Centre Campbell River, British Columbia

BC ENV British Columbia Ministry of Environment and Climate Change Strategy

CSR ENV British Columbia Contaminated Sites Regulation (CSR) Schedule 3.2 Generic Numerical Water Standards

(2021)

WQG ENV British Columbia Approved (March 2021), Working (June 2021) and Source Drinking (December 2020) Water

Quality Guidelines (WQG). Most stringent guideline is presented unless otherwise indicated.

FAW Guideline/standard for the protection of freshwater aquatic life

DW Guideline/standard for the protection of drinking water

IW Guideline/standard for the protection of irrigation water. Applies to all soil types.

LW Guideline/standard for the protection of livestock water

STM Short term maximum WQG FAW (generally less stringent than LTA guidelines)

LTA Long term average WQG FAW (generally most stringent guideline). WQGs presented are LTA unless otherwise

specified. WQG DW WQG FAW

c CSR DW CSR FAW

b

Working WQG. Provides benchmarks for those substances that have not yet been fully assessed and endorsed by

the ENV

Interim WQG developed when insufficient data available to meet the minimum requirement of a full guideline.

Aesthetic objective. Parameters may impair the taste, smell or colour of water or interfere with the supply of good quality water. Parameters do not cause adverse health effects.

ND Not detected at the associated reporting limit.

Estimated concentration.

R Rejected result

[a] Limit varies with pH.

[b] Limit varies with Hardness.

[c] Limit varies with Chloride (mg/L).

[d] Limit varies with pH and Temperature.

[e] Limit varies with Dissolved Calcium.

[f] Limit varies with Methyl Mercury.

[h] Standard varies with pH, temperature and substance isomer.

calca EXP(1.6-3.327*pH+0.402*pH^2) mg/L calcb EXP(0.736*LN(Hardness)-4.943) ug/L

calcc 0.04*Hardness ug/L

calcd 3.31+(Exp(1.273*LOG(Hardness)-4.704)) ug/L

 calce
 0.0044*Hardness+0.605 mg/L

 calch
 Exp(0.76*LN(Hardness)+1.06) ug/L

 calcf
 7.5+(0.75*(Hardness-90)) ug/L

[i] B.C. Ministry of Environment and Climate Change, 2021. Protocol 9 for Contaminated Sites Version 2.

[j] Limit varies with dissolved calcium

[l] Limit varies with crop.

(ii) Standard varies with pH, temperature and substance isomer. Consult a director for further advice.

Exceeds indicated standard or guideline

Blue text Laboratory detection limit is greater than indicated standard or guideline

(c) Background dependant. Comparison to background not complete or background location has not been established.

SS Site-specific objective for the lower Columbia River, BC

Dissolved Oxygen, field WQG specific to buried embryo/alevin life stages of aquatic life (most conservative).

Temperature, field (stream) WQG specific to streams with unknown fish distributions.

Turbidity, field WQG applies to water during clear flows or clear water

Cadmium, dissolved

WQG LTA applies to water hardnesses between 3.4 and 285 mg/L CaCO3.

WQG LTA applies to water hardnesses between 50 and 250 mg/L CaCO3.

Lead, total

WQG LTA and STM apply to water hardnesses between 8 and 360 mg/L CaCO3.

Wagaenese, total

WQG LTA applies to water hardnesses between 37 and 450 mg/L CaCO3.

Phosphorous, total (lakes) WQG applies to total phosphorous in lakes where salmonoids are predominant fish species and during the spring

overturn (if residence time of the epilimnetic water exceeds 6 months) or the mean phosphorous epilimnetic growing

season concentration (if time of the epilimnetic water is less than 6 months) residence

Selenium, total Alert concentration = 1 ug/L.

Zinc, total WQG LTA applies to water hardnesses between 90 and 330 mg/L CaCO3.

* Chloride guideline only applies to total Chloride. Guideline has been included for reference only.